

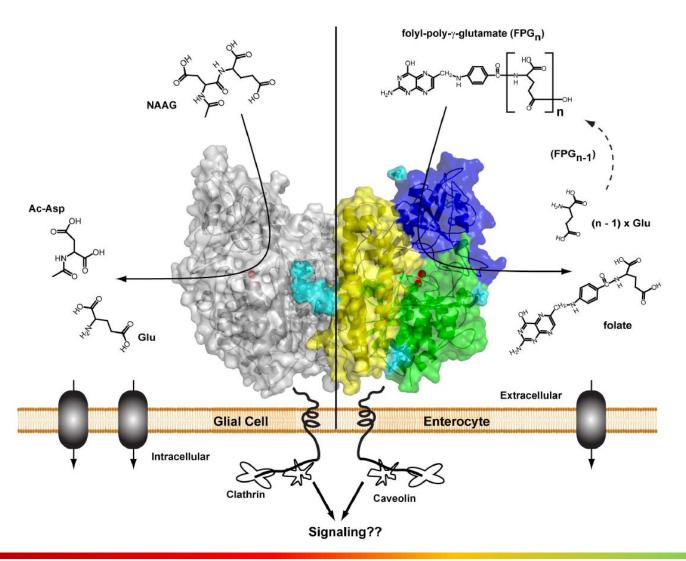
THE FDA APPROVAL OF 68GA-PSMA-11 PET: AN ACADEMIC COLLABORATIVE JOURNEY



Assistant Professor, Nuclear Medicine and Theranostics Director, Clinical Research Program

PINTAD MEETING 01 - 28 - 2021

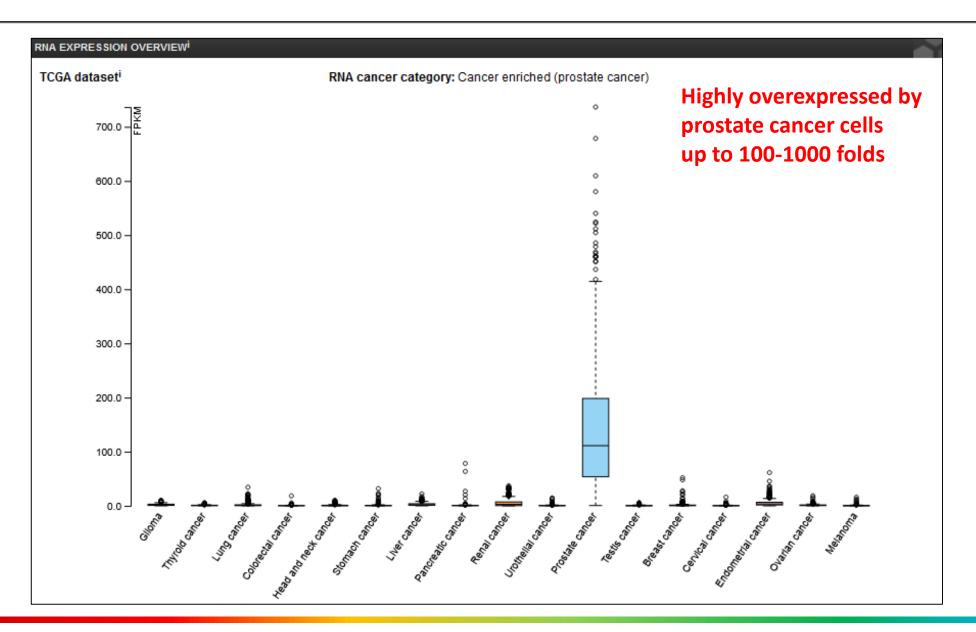
DISCLOSURES


	Commercial Interest	Nature of Relevant Financial Relationship		
		What was received	For what role	
Advan	ced Accelerator Applications	Honoraria	Blinded Independent Central Reader	
Blue Ea	arth Diagnostics	Honoraria	Consultant	
Curium	n Pharma	Honoraria	Consultant	
GE Hea	althcare	Honoraria	Consultant	
IBA Ra	dioPharma	Honoraria	Speaker	
Jansse	n Pharmaceuticals	Honoraria	Consultant	
POINT	biopharma	Honoraria	Consultant	
		Honoraria	Consultant	
Progen	Progenics / Lantheus	Honoraria	Blinded Independent Central Reader	
		Research grant	Principal Investigator	
Radion	medix	Honoraria	Blinded Independent Central Reader	
Telix P	harmaceuticals	Honoraria	Speaker	

PROSTATE SPECIFIC MEMBRANE ANTIGEN

NERVOUS SYSTEM

SMALL INTESTINE


Prostate Specific Membrane Antigen

- = glutamate carboxypeptidase II (GCP-II)
- = folate hydrolase 1 (FOLH1)

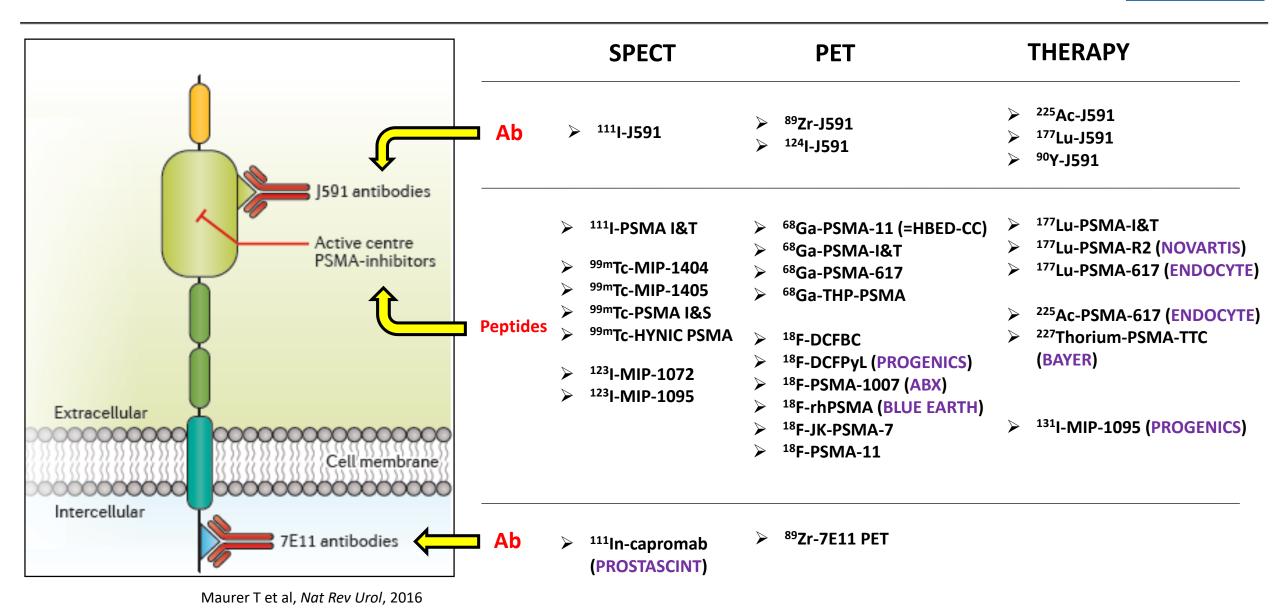
- cell surface glycoprotein enzyme
- neurotransmission
- glutamate and folate (B9 vitamin) metabolism

PSMA EXPRESSION IN CANCER

PSMA in PROSTATE CANCER

Reference	Adeno- carcinoma	Lymph node metastaes	Bone metastases	Other or unspecified metastases	Total
Horoszewicz et al., Anticancer Res 1987; 7:927	9/9	2/2	XXXXXX	30000000	11/11
Lopes et al., Cancer Res 1990; 50:6423	10/10	800000000			10/10
Israeli et al., Cancer Res 1994; 54:1807	1/1		****		1/1
Troyer et al., Int J Cancer 1995; 62:552	3/4				3/4
Wright et al., Urology 1996; 48:326	25/25		*****		25/25
Silver et al., Clin Cancer Res 1997; 3:81	33/35	7/8	8/18		48/61
Llu et al., Cancer Res 1997; 57:3629	21/21	588668866	3000000		21/21
Cawakami et al., Cancer Res 1997; 57:2321	15/15				15/15
Sweat et al., Urology 1998; 52:637	232/232	227/232			459/464
Bostwick et al., Cancer 1998; 82:2256	129/129	184/184			313/313
Chang et al., Cancer Res 1999; 59:3192	12/12	100 M			12/12
Chang et al., Urology 2001; 57:1179	60000000000000000000000000000000000000	6/6	7/7	9/9	22/22
Ross et al., Clin Cancer Res 2003; 9:6357	138/138	88888888	0000000	00000000000	138/138
Birtle et al. BJUI 2005; 96:303	30/33				30/33
Kinoshita et al., World J Surg 2006; 30:628	19/19				19/19
Kusumi et al., Pathology Int 2008; 58:687	42/42				42/42
Hull et al., BJUI 2009; 104:915	85/90	9999999		***	85/90
Mannweiler et al., Pathol Oncol Res 2009; 15:167	49/51	3/3	25/31	15/17	92/102
Ananias et al., Prostate 2009; 69:1101	200000000	21/21	17/17	200000000000000000000000000000000000000	38/38
Ben Jemaa et al., J Exp Clin Cancer Res 2010; 29:171	38/39	\$2000000	2 8 2 8 8 8		38/39
Zhang et al., PLoS ONE 2011; 6:e27970	000000000000000000000000000000000000000	*****		83/100	83/100
Minner et al., Prostate 2011; 71:281	1606/1700	000000000000000000000000000000000000000	826200000	XXXXXXXXXXX	1606/1700
TOTAL	2590/2746	450/456	57/73	107/126	3204/3401

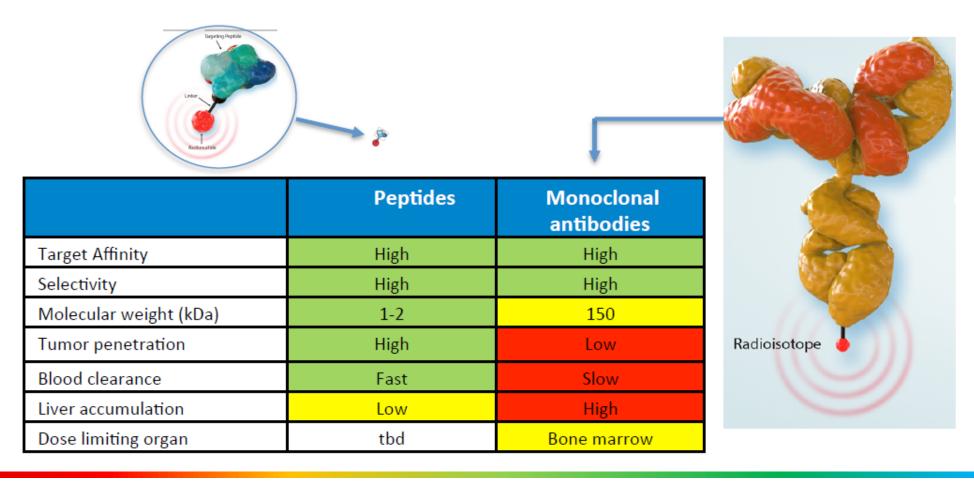
		I VIII	
	76 - 100%	12 12 ster	0
	51 - 75%	S. S	100
	26 - 50%		
	0 - 25%	31 Sec. 31.	4
% of tumo positive fo	rs stained r PSMA	medium expression	
		medium expression	


Hupe et al; Frontiers in Oncology 2018; 8: 1-7

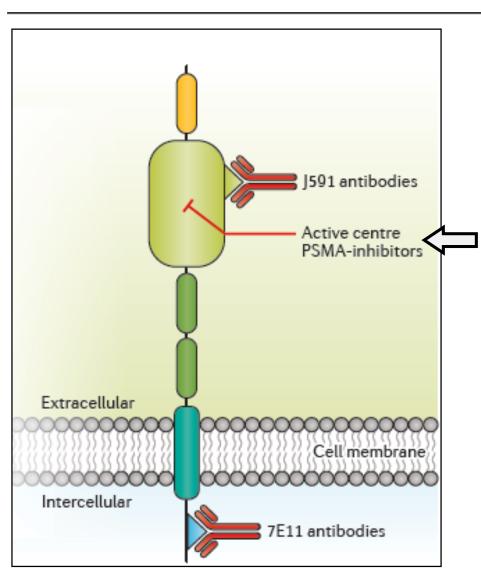
PSMA overexpression in 94% of prostate cancer cells

94%

PSMA FOR SMALL PEPTIDES INHIBITORS



PSMA PEPTIDES vs ANTIBODY


Peptides are attractive targeting molecules due to their small size and ease of manufacture

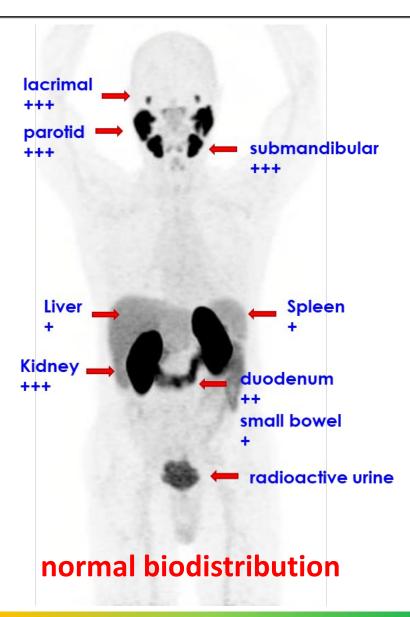
For PET imaging the rapid systemic clearance, tissue distribution and tumor penetrance favor small peptides vs. other targeting moieties

PSMA = TARGET FOR SMALL PEPTIDES PET TRACERS

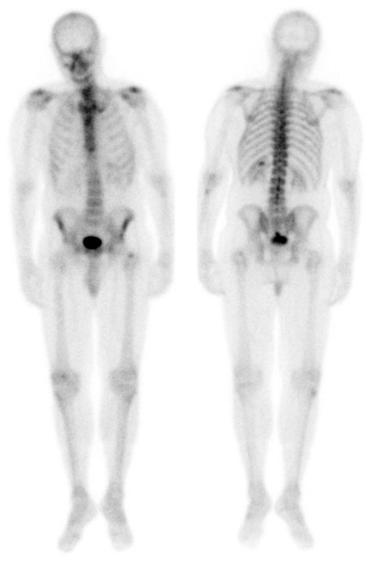
- ⁶⁸Ga-PSMA-11
- ⁶⁸Ga-PSMA-I&T

FREE OF USE ACADEMIA

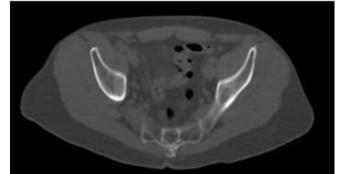
- ¹⁸F-DCFPyL (PyL™)
- TLX591-CDX (ILLUMET™)
- ¹⁸F-rhPSMA
- ¹⁸F-PSMA-1007

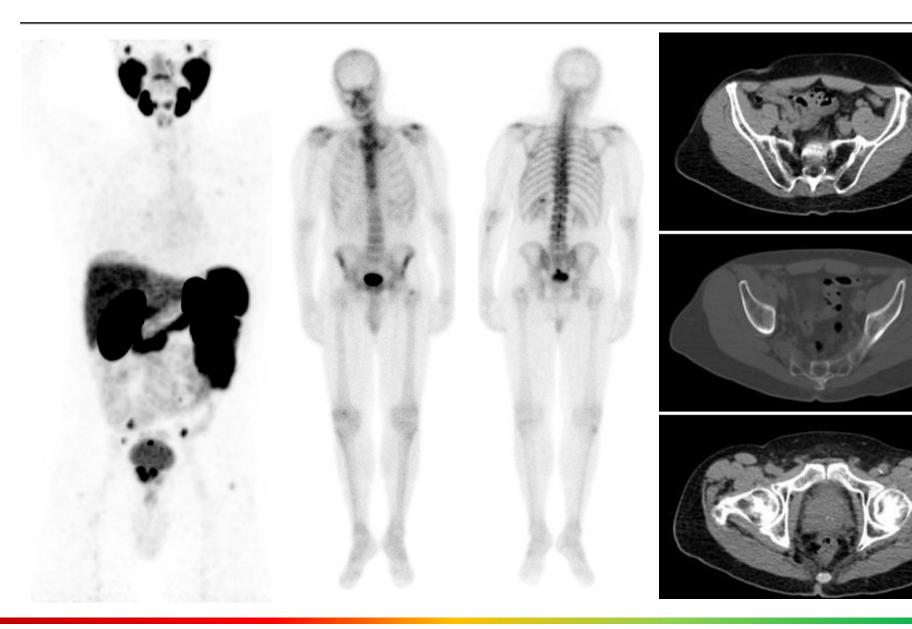


INDUSTRY

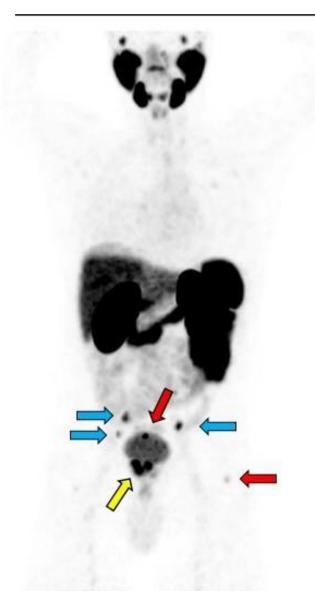

Maurer T et al, Nat Rev Urol, 2016

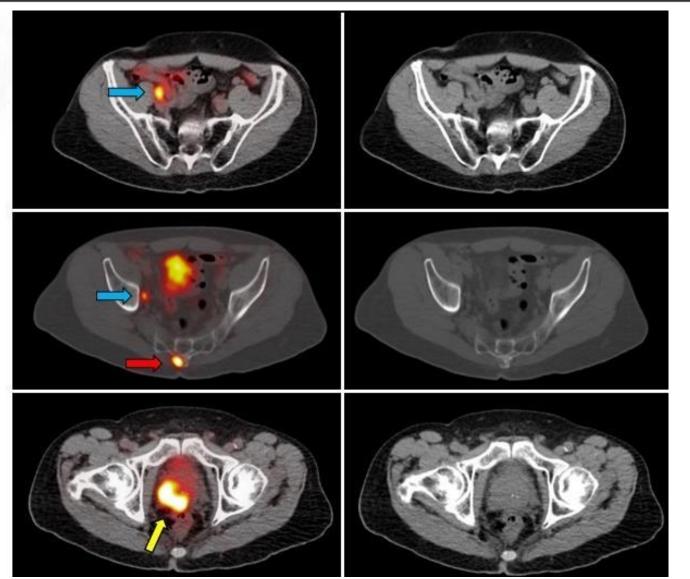
PSMA FOR PET/CT MOLECULAR IMAGING




77 y/o patient
Initial staging of
Prostate Cancer
iPSA 7.1
GS 4+5=9
bone scan negative

LOCAL TREATMENT:

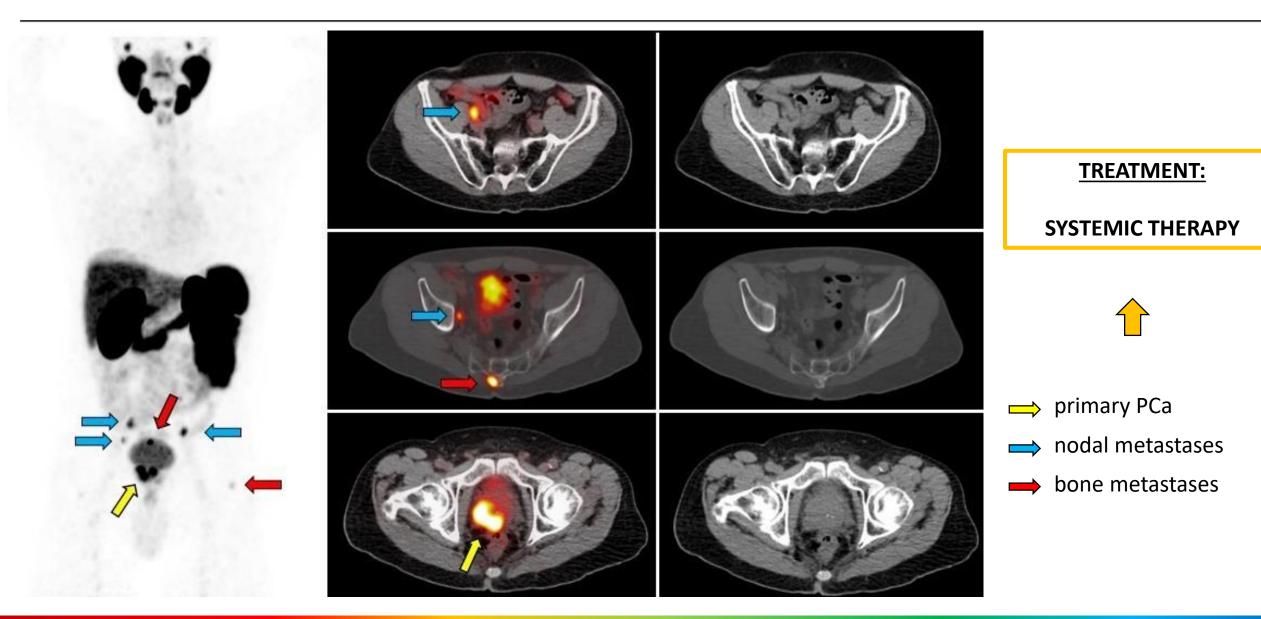

SURGERY OR RADIATION THERAPY



77 y/o patient
Initial staging of
Prostate Cancer
iPSA 7.1
GS 4+5=9
bone scan negative

77 y/o patient
Initial staging of
Prostate Cancer

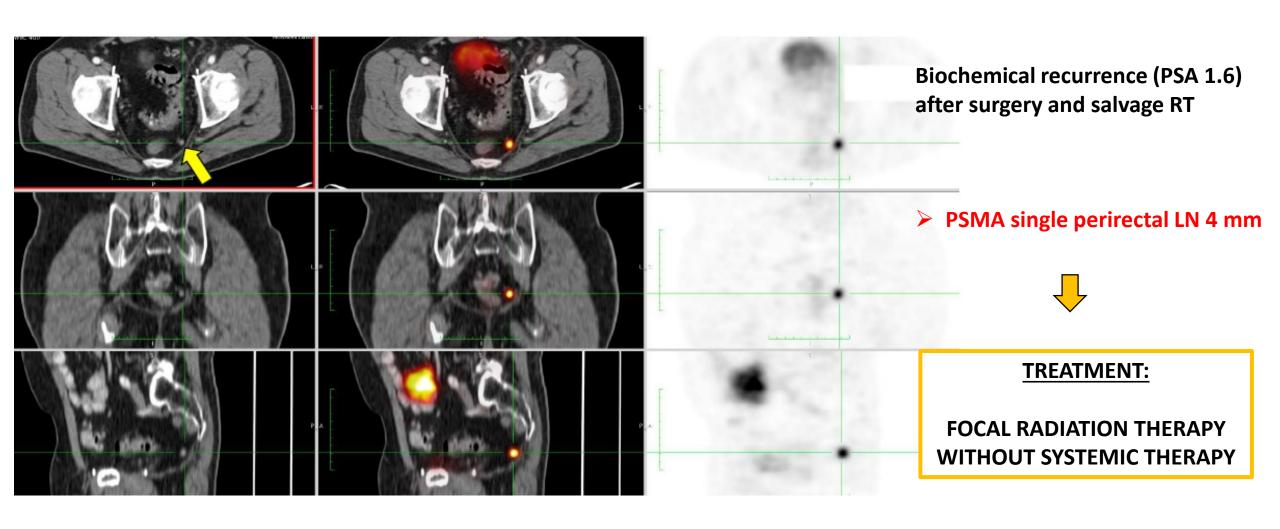
iPSA 7.1

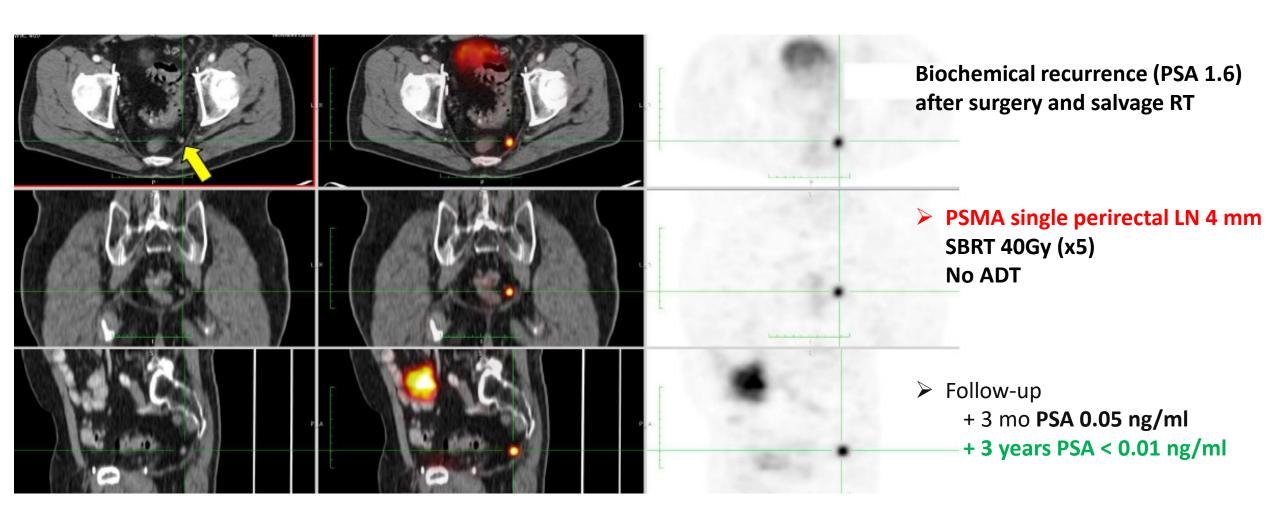

GS 4+5=9

bone scan negative

- → nodal metastases
- bone metastases

Jeremie Calais MD MSc


Biochemical recurrence (PSA 1.6) after surgery and salvage RT

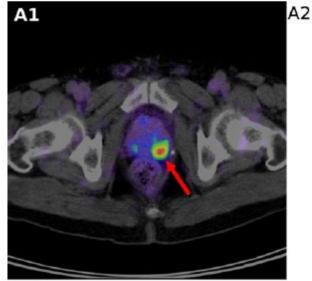

TREATMENT:

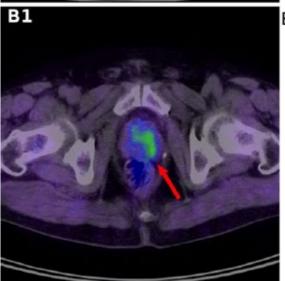
SYSTEMIC THERAPY (MEDICAL CASTRATION)

⁶⁸Ga-PSMA-11 PET is FDA APPROVED at UCLA and UCSF

FDA NEWS RELEASE

FDA Approves First PSMA-Targeted PET Imaging Drug for Men with Prostate Cancer


Today, the U.S. Food and Drug Administration approved Gallium 68 PSMA-11 (Ga 68 PSMA-11) — the first drug for positron emission tomography (PET) imaging of prostate-specific membrane antigen (PSMA) positive lesions in men with prostate cancer.



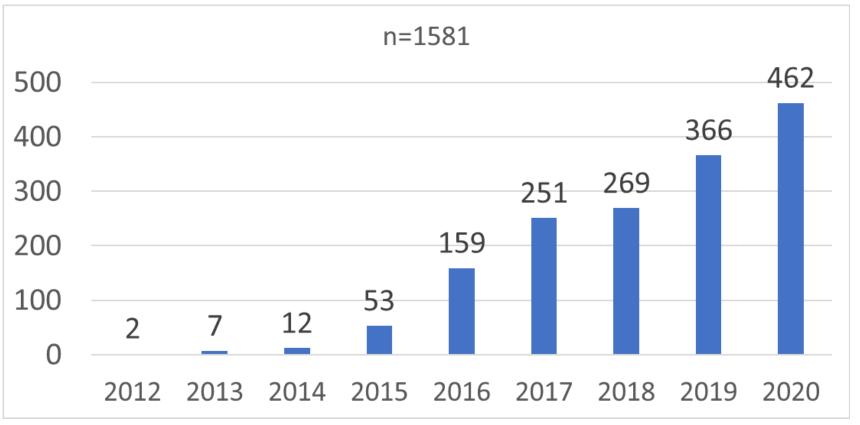
History

Eur J Nucl Med Mol Imaging (2012) \$9:1085-1086

Eur J Nucl Med Mol Imaging (2012) 39:1085-1086 DOI 10.1007/s00259-012-2069-0

IMAGE OF THE MONTH

[68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with ¹⁸F-FECH


A. Afshar-Oromieh • U. Haberkorn • M. Eder • M. Eisenhut · CM. Zechmann

UCLA

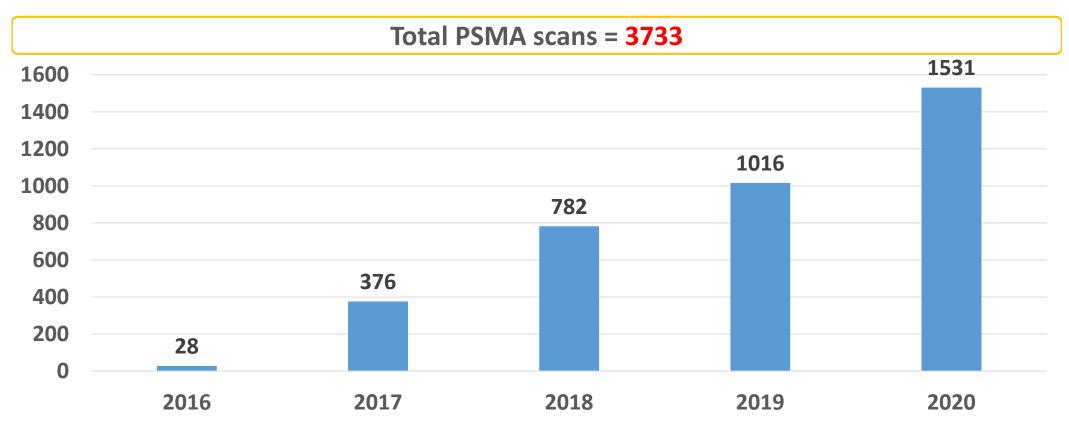
History

UCLA AHMANSON TRANSLATIONAL THERANOSTICS DIVISION

68GA-PSMA-11 PET CLINICAL RESEARCH PROGRAM

ACADEMIC INVESTIGATOR INITIATED AND SPONSORED IND #130649

IRB#	NCT #	Protocol	enrollment
16-001095	NCT02940262	Biochemical Recurrence	1200 / 1200 - Closed
16-001684	NCT03368547	Primary Staging before Surgery	400 / 400 - Closed
17-001885	NCT03515577	PSMA vs AXUMIN comparison	50 / 50 - Closed
18-001776	NCT04282824	MSG impact on PSMA PET signal	16 / 16 - Closed
18-000484	NCT03582774	Phase 3 randomized Trial of PSMA PET based SRT	193 / 193 - Closed
17-001336	NCT04050215	Metastatic Staging / Other indications / "Basket"	936 / 1200 - Closed
19-001868	NCT04348682	Expanded Access protocol	400 / 2500 - Closed
19-002024	NCT04279561	PSMA ADT ARSI	04 / 30 - Open
20-000378	NCT04457245	Randomized Trial of PSMA for dRT	13 / 316 - Open


UCLA AHMANSON TRANSLATIONAL THERANOSTICS DIVISION

68GA-PSMA-11 PET CLINICAL RESEARCH PROGRAM

ACADEMIC INVESTIGATOR INITIATED AND SPONSORED IND #130649

COST-RECOVERY

- Provide evidence that the drug has a potential clinical benefit
- Demonstrate that the data to be obtained from the clinical trial would be essential to establishing that the drug is effective or safe for the purpose of obtaining initial approval
- Demonstrate that the clinical trial could not be conducted without charging because the cost of the drug is extraordinary to the sponsor

Charging for Investigational Drugs Under an IND —

Questions and Answers

Guidance for Industry

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER)

> June 2016 Procedural

SELF-FUNDING

Johannes Czernin, MD

Chief, Ahmanson Translational Theranostics Division Associate Director, JCCC Cancer Molecular Imaging Professor and Vice Chair, Molecular & Medical Pharmacology

NDA timeline

Non-clinical Pharm PD/PK Pharm/Tox Dosimetry Pivotal Phase 3 protocols for IND Uniform UCLA & UCSF protocols

UCSF/UCLA
Data review

2011

Spring 2016

Fall 2017

European Compassionate Use Studies

Thomas Hope MD

Prior academic sponsored NDAs

C-11 choline (2012): Mayo Clinic

■ Ga-68 DOTATOC (2019): University of Iowa

■ F-18 fluorodopa (2019): Feinstein Institutes for Medical Research

NDA timeline

Non-clinical Pharm PD/PK Pharm/Tox Dosimetry Pivotal Phase 3 protocols for IND Uniform UCLA & UCSF protocols

UCSF/UCLA
Data review

Pre-NDA meeting request

Pre-NDA meeting

2011

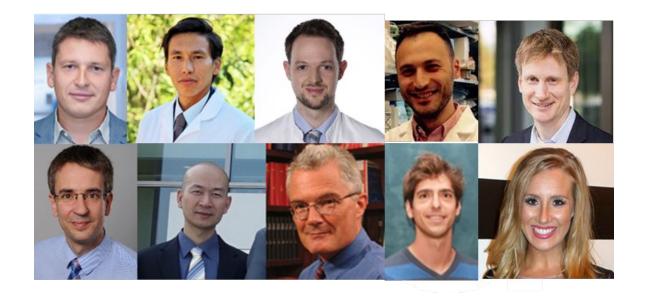
Spring 2016

Fall 2017

Spring **2018**

August 2018

European Compassionate Use Studies



ACADEMIC COLLABORATION

Ken Herrmann
Wolfgang Fendler
Matthias Eiber
Johannes Czernin
Shaojun Zhu
Roger Slavik
Giuseppe Carlucci

Enabled by the FDA's willingness to allow two paired NDAs

Thomas Hope
Joseph Blecha,
Robin Ippish
Ashley Mishoe
Sara St. James

NDA timeline

Non-clinical Pharm
PD/PK
Pharm/Tox
Dosimetry

Pivotal Phase 3 protocols for IND Uniform UCLA & UCSF protocols

UCSF/UCLA
Data review

Pre-NDA meeting request

Pre-NDA meeting

NDA Submission
Regulatory
Non-clinical
Statistical
CMC

FDA AUDIT

CLINIC

FDA AUDIT

CYCLOTRON

2011

Spring 2016

Fall 2017

Spring **2018**

August 2018

September 2019

Spring 2020

Summer 2020

European Compassionate Use Studies

NDA timeline

Non-clinical Pharm
PD/PK
Pharm/Tox
Dosimetry

Pivotal Phase 3 protocols for IND Uniform UCLA & UCSF protocols

UCSF/UCLA
Data review

Pre-NDA meeting request

Pre-NDA meeting

NDA Submission
Regulatory
Non-clinical
Statistical
CMC

FDA AUDIT

FDA AUDIT

CLINIC CYCLOTRON

2011

Spring 2016

Fall 2017

Spring **2018**

August 2018

September 2019

Spring **2020**

Summer 2020

European Compassionate Use Studies

FDA NEWS RELEAS

FDA Approves First PSMA-Targeted PET Imaging Drug for Men with Prostate Cancer

December 1st, 2020

Today, the U.S. Food and Drug Administration approved Gallium 68 PSMA-11 (Ga 68 PSMA-11) – the first drug for positron emission tomography (PET) imaging of prostate-specific membrane antigen (PSMA) positive lesions in men with prostate cancer.

UNIQUE REGULATORY APPROACH - KEY POINTS

- > Two separate NDAs: UCSF NDA 212643 and UCLA NDA 212642
- > Same clinical and non-clinical information
- > Site-specific CMC modules (Chemistry Manufacturing and Controls)
- > Similar package insert; different vial label
- > Waiving market exclusivity
- ➤ 505(b)(2) NDA pathway
 - Data from literature, not conducted by the applicant
 - Nonclinical pharmacology and clinical dosimetry

WHAT DOES IT MEAN NOW? - KEY POINTS

- > UCSF and UCLA only distribute 68Ga-PSMA-11 within their institutions
- > UCSF and UCLA are filing new HCPCS code request with Medicare (currently not covered)
- > Open to 68Ga-PSMA-11 ANDA applications immediately (Abbreviated)
 - **➤** No patent protection
 - Market exclusivity waived
 - > Not required: nonclinical and clinical studies
 - > Required: site and product/process specific CMC information
 - Final product composition, formulation, specification and controls;
 - manufacturing process and controls etc.

REGULATORY LANDSCAPE

(Diagnostic PET Drugs Indicated for Prostate Cancer)

- FDA Approved
 - 2012 Choline C 11 Injection
 - For positron emission tomography (PET) imaging of patients with suspected prostate cancer recurrence and non-informative bone scintigraphy, computerized tomography (CT) or magnetic resonance imaging.
 - 2016 AXUMIN (fluciclovine F 18) injection
 - Indicated for positron emission tomography (PET) imaging in men with suspected prostate cancer recurrence based on elevated blood prostate specific antigen (PSA) levels following prior treatment.
 - 2020 Gallium Ga 68 PSMA-11 Injection
 - Indicated for positron emission tomography (PET) of prostate-specific membrane antigen (PSMA) positive lesions in men with prostate cancer:
 - with suspected metastasis who are candidates for initial definitive therapy.
 - with suspected recurrence based on elevated serum prostate-specific antigen (PSA) level.
- Submitted to FDA (information disclosed in public domain)
 - Lantheus NDA for PyL[™] (¹⁸F-DCFPyL): Submitted September 2020; PDUFA date May 28, 2021
 - Telix NDA for TLX591-CDx (Kit for the preparation of ⁶⁸Ga-PSMA-11): Submitted September 2020; Accepted for filing in November 2020.

⁶⁸Ga-PSMA-11 PET is FDA APPROVED at UCLA and UCSF

FDA Approves First PSMA-Targeted PET Imaging Drug for Men with Prostate Cancer

Today, the U.S. Food and Drug Administration approved Gallium 68 PSMA-11 (Ga 68 PSMA-11) – the first drug for positron emission tomography (PET) imaging of prostate-specific membrane antigen (PSMA) positive lesions in men with prostate cancer.

Gallium Ga 68 PSMA-11 Injection, for intravenous use Initial U.S. Approval: 2020

-----INDICATIONS AND USAGE-----

Ga 68 PSMA-11 Injection is a radioactive diagnostic agent indicated for positron emission tomography (PET) of prostate-specific membrane antigen (PSMA) positive lesions in men with prostate cancer:

- with suspected metastasis who are candidates for initial definitive therapy.
- with suspected recurrence based on elevated serum prostatespecific antigen (PSA) level. (1)

2 PIVOTAL STUDIES

2 pivotal studies

Biochemical Recurrence n=635

UCLA NCT02940262 n=250

UCSF NCT03353740 n=385

Initial Staging before surgery n=277

UCLA NCT03368547 n=130

UCSF NCT02611882, NCT02919111 n=147

2 PIVOTAL STUDIES

2 pivotal studies

Biochemical Recurrence

UCLA NCT02940262 n=250

n=635

UCSF NCT03353740 n=385

Initial Staging before surgery n=277

UCLA NCT03368547 n=130

UCSF NCT02611882, NCT02919111 n=147

STUDY DESIGN

Primary Endpoint

positive predictive value (PPV) on a per-patient and per-region basis of 68Ga-PSMA-11 PET for detection of tumor location confirmed by histopathology

STATS

- **Estimated sample size needed**: ≥107 patients with biopsy and/or surgery follow-up
- Hypothesis: PPV of 70%

STUDY DESIGN

Primary Endpoint

positive predictive value (PPV) on a per-patient and per-region basis of 68Ga-PSMA-11 PET for detection of tumor location confirmed by histopathology or "composite" reference standard (PSA, imaging).

STATS

- **Estimated sample size needed**: ≥107 patients with biopsy and/or surgery follow-up
- Hypothesis: PPV of 70%

STUDY DESIGN

COMPOSITE ENDPOINT

- > Histopathology
- > PSA decrease after focal therapy without ADT
- ➤ Correlation with Other imaging modality

⁶⁸Ga-PSMA-11 PET/CT for biochemical recurrence localization

STUDY DESIGN - COMPOSITE ENDPOINT

All patients will be followed up 3-12 months with conventional imaging (dedicated CT, MRI and/or bone scan). Interpretation of follow-up imaging will be performed by local read. For lesions that are reported in the blinded reads but not reported in the local evaluation of follow-up imaging, the local readers will be informed of the location of the lesions and follow-up will be performed for these additional lesions. Preferably, the follow-up conventional imaging should be the same modality/modalities as the initial staging work-up to allow for reproducible and accurate comparisons.

⁶⁸Ga-PSMA-11 PET validation based on follow-up imaging:

- i) <u>Lymph nodes</u> will be assessed by change in size. ⁶⁸Ga-PSMA-11 positive lymph nodes will be considered:
 - (1) True positive:
 - For patients undergoing systemic treatment (alone or in combination with targeted treatment): If on post-treatment follow-up imaging within 3-12 months, lymph nodes seen on CT or MRI decrease by more than 30% in short axis diameter and PSA declines by more than 50%.
 - If PSA increases by more than 50% on systemic therapy, then a increase in the size of lesion by more than 20% will be considered a true positive lesion.
 - In subjects with localized suspected lymph node(s) receiving targeted treatment without concomitant systemic treatment there are two ways to meet true positive disease:
 - If the subject shows a decrease of PSA by greater than 50% after targeted treatment and the lymph node does not enlarge (change in size less than 20% or less than 3 mm increase in short axis diameter) [OR]
 - If on post-treatment follow-up imaging within 3-12 months, lymph nodes seen on CT or MRI decrease by more than 30% in short axis diameter (with a minimum of 3 mm in change in size)
 - For untreated patients: If on follow-up imaging within 3-12 months, lymph nodes seen on CT or MRI increase by more than 20% in short axis diameter (with a minimum of 3 mm in change in size).
 - (2) False positive:
 - For patients undergoing systemic treatment (alone or in combination with targeted treatment): If on post-treatment follow-up imaging within 3-12 months, lymph nodes seen on CT or MRI increase by more than 20% in short axis diameter and PSA decreases by more than 50%.
 - In subjects with localized suspected lymph node(s) receiving targeted treatment without concomitant systemic treatment there are two ways to meet false positive disease:
 - If the subject does not demonstrate a decrease of PSA by greater than 50% after targeted treatment [OR]

- If on post-treatment follow-up imaging within 3-12 months, lymph nodes seen on CT or MRI increase by more than 20% in short axis diameter (with a minimum of 3 mm in change in size)
- For untreated patients: If on follow-up imaging within 3-12 months, lymph nodes seen on CT or MRI decrease by more than 30% in short axis diameter (with a minimum of 3 mm in change in size).
- (3) If all regions in a patient/region do not meet criteria for either True positive or False positive disease, then the patient/region will be considered inevaluable for primary endpoint.
- Visceral lesions (non-lymph node soft tissue or organ) will be assessed by change in size. ⁶⁸Ga-PSMA-11 positive visceral lesions will be considered:
 - (1) True positive:
 - For patients undergoing systemic treatment (alone or in combination with targeted treatment): If on post-treatment follow-up imaging within 3-12 months, lesions seen on CT or MRI decrease by more than 30% in long axis diameter and PSA declines by more than 50%.
 - If PSA increases by more than 50% on systemic therapy, then a increase in the size of lesion by more than 20% will be considered a true positive lesion.
 - In subjects with localized suspected lesions(s) receiving targeted treatment without concomitant systemic treatment there are two ways to meet true positive disease:
 - If the subject demonstrates a decrease of PSA by greater than 50% after targeted treatment [OR]
 - If on post-treatment follow-up imaging within 3-12 months, lesions seen on CT or MRI decrease by more than 30% in long axis diameter (with a minimum of 3 mm in change in size)
 - For untreated patients: If on follow-up imaging within 3-12 months, lesions seen on CT or MRI increase by more than 20% in long axis diameter (with a minimum of 3 mm in change in size).
 - (2) False positive:
 - For patients undergoing systemic treatment (alone or in combination with targeted treatment): If on post-treatment follow-up imaging within 3-12 months, lesions seen on CT or MRI increase by more than 20% in long axis diameter and PSA decreases by more than 50%.
 - In subjects with localized suspected lesions(s) receiving targeted treatment without concomitant systemic treatment there are two ways to meet false positive disease:
 - If the subject does not demonstrate a decrease of PSA by greater than 50% after targeted treatment [OR]

- If on post-treatment follow-up imaging within 3-12 months, lesions seen on CT or MRI increase by more than 20% in long axis diameter (with a minimum of 3 mm in change in size)
- For untreated patients: If on follow-up imaging within 3-12 months, lesions seen on CT or MRI decrease by more than 30% in long axis diameter (with a minimum of 3 mm in change in size).
- (3) If all regions in a patient/region do not meet criteria for either True positive or False positive disease, then the patient/region will be considered inevaluable for primary endpoint.
- iii) ⁶⁸Ga-PSMA-11 positive bone lesions will be considered:
 - (1) True positive:
 - If there was a corresponding positive sclerotic lesion on the CT portion of the ⁶⁸Ga-PSMA-11 PET or on a separate CT obtained ≤ 30 days before or after the PET/CT in the same location as the PSMA uptake.
 - If there is focal uptake seen in the same location as the PSMA uptake on the baseline bone scan performed within one month of ⁶⁸Ga-PSMA-11 PET.
 - If there is a lesion noted in the same location as the PSMA uptake on the initial MRI performed within one month of 68 Ga-PSMA-11 PET.
 - If within 12 months follow-up CT demonstrates development of sclerosis in the same location as the PSMA uptake.
 - If within 12 months follow-up MRI demonstrates a new bone lesion in the same location as the PSMA uptake.
 - If within 12 months follow-up bone scan demonstrates new focal uptake in the same location as the PSMA uptake.
 - In subjects with localized suspected bone lesion(s) receiving targeted treatment without concomitant systemic treatment:
 - If the subject demonstrates a decrease of PSA by greater than 50% after targeted treatment.
 - (2) False positive:
 - In subjects with localized suspected bone lesion(s) receiving targeted treatment without concomitant systemic treatment:
 - If the subject does not demonstrate a decrease of PSA by greater than 50% after targeted treatment with curative intent (ie nonpalliative radiation).
 - If $^{68}\text{Ga-PSMA-11}$ positive bone lesions do not meet the criteria for true positive findings, and appropriate correlative and follow-up imaging was acquired.

⁶⁸Ga-PSMA-11 PET/CT for biochemical recurrence localization

STUDY DESIGN - COMPOSITE ENDPOINT

- (3) If bone lesions do not meet criteria for either true positive or false positive disease listed above, then the patient/region will be considered inevaluable for primary endpoint.
- iv) ⁶⁸Ga-PSMA-11 positive prostate bed and prostate lesions will be considered:
 - (1) True positive:
 - For patients undergoing systemic treatment (alone or in combination with targeted treatment): If on post-treatment follow-up imaging within 3-12 months, lesions seen on CT or MRI decrease by more than 30% in long axis diameter
 - In subjects with localized suspected lesions(s) receiving targeted treatment without concomitant systemic treatment there are two ways to meet true positive disease;
 - If the subject demonstrates a decrease of PSA by greater than 50% after targeted treatment [OR]
 - If on post-treatment follow-up imaging within 3-12 months, lesions seen on CT or MRI decrease by more than 30% in long axis diameter (with a minimum of 3 mm in change in size)
 - For untreated patients: If on follow-up imaging within 3-12 months, lesions seen on CT or MRI increase by more than 20% in long axis diameter (with a minimum of 3 mm in change in size).
 - (2) False positive:
 - For patients undergoing systemic treatment (alone or in combination with targeted treatment): If on post-treatment follow-up imaging within 3-12 months, lesions seen on CT or MRI increase by more than 20% in long axis diameter and PSA decreases by more than 50%.
 - In subjects with localized suspected lesions(s) receiving targeted treatment without concomitant systemic treatment there are two ways to meet false positive disease:
 - If the subject does not demonstrate a decrease of PSA by greater than 50% after targeted treatment [OR]
 - If on post-treatment follow-up imaging within 3-12 months, lesions seen on CT or MRI increase by more than 20% in long axis diameter (with a minimum of 3 mm in change in size)
 - For untreated patients: If on follow-up imaging within 3-12 months, lesions seen on CT or MRI decrease by more than 30% in long axis diameter (with a minimum of 3 mm in change in size).
 - (3) If the lesion does not meet criteria for either True positive or False positive disease, then the lesion will be considered inevaluable for primary endpoint.

- i) ⁶⁸Ga-PSMA-11 positive findings are aimed to be confirmed by histopathology/biopsy if clinically feasible. Pathology performed 60 days before the PSMA PET will be available for correlation.
- ii) Histopathological procedures and biopsies will be performed as clinically indicated and as per institutional protocol.
 - Positive Histopathology/Biopsy: Confirmed sites of metastatic or tumor involvement by histopathology/biopsy will be discussed with the responsible physician/surgeon.
 - (a) True Positive: lesion is positive on targeted biopsy/surgical sampling and is read as positive on PSMA PET.
 - (b) False Negative: lesion is positive on targeted biopsy/surgical sampling and is read as negative on PSMA PET.
 - (2) Negative Biopsy: Patients with suspected tumor recurrence on ⁶⁸Ga-PSMA-11 PET with negative histopathology/biopsy will be handled as outlined below:
 - (a) Lymph nodes:
 - For patients undergoing nodal dissection: Patients will be rescanned with dedicated CT, MRI or a repeat ⁶⁸Ga-PSMA-11 PET to determine if the suspicious ⁶⁸Ga-PSMA-11 positive node was removed.
 - If ⁶⁸Ga-PSMA-11 positive lymph node is still present, a repeat biopsy can be pursued if clinically feasible and applicable, or follow-up using imaging as described above will be performed.
 - If the corresponding node was removed, then this will be considered a False Positive.
 - For patients undergoing needle biopsy: Images of the procedure will be reviewed to determine if the correct node was biopsied.
 - If the correct node was biopsied, then a negative biopsy will be considered a False Positive.
 - If the incorrect node was biopsied, then follow-up imaging as described above will be performed.
 - (b) Bone lesions: Given the high rate of false negative biopsies for osseous metastases in patients with prostate cancer, patients with negative bone biopsies of PSMA PET positive lesions will be further evaluated:
 - If pathology demonstrates an alternative diagnoses that is known to be PSMA positive (eg Renal Cell Carcinoma metastases, Paget's disease), then this will be considered a False Positive.
 - If pathology is indeterminate, then follow-up imaging as described above will be performed.

- (3) Although not routinely performed during standard practice, immunohistochemical staining for PSMA of tumor specimens (primary and lymph node metastases) may be performed, although not required.
- d) Definitions of True Positive, False Positive, True Negative, and False Negative patients and regions: Pathology will be considered superior to imaging and clinical follow-up when available as described below. Patient and region level classification will be performed for each blinded reader, and be reported separately. The following criteria serve as a guide for interpretation. However not all findings on a lesions, region and patient level can be detailed here and investigators may deviate from these criteria in individual patients. These will be recorded for each interpretation that is not described in this protocol for the definition of a region or patient.
- i) Patient level evaluation:
 - True positive patient: A single region in a patient contains a true positive node either by pathology or imaging/clinical follow-up.
 - (a) For a patient to be considered a True Positive, only one region is required to have a true positive lesion as described above, unless one region is categorized as a false positive based on pathology. This means that a single pathology false positive region outweighs regions with imaging/clinical followup true positive disease.
 - (b) A patient will be considered a True Positive if one region contains a lesion that is True Positive, even if other regions are categorized as inevaluable or false positive based on imaging or clinical follow-up.
 - (2) True negative patient: in the absence of True Positive or False Positive lesions, a patient will be considered a True Negative if there is pathology that is negative for disease and corresponding lesion is negative by PSMA PET.
 - (3) False positive patient:
 - (a) Pathology confirms a false positive lesion that is read as positive on PSMA PET.
 - (b) In the absence of pathology: there are no true positive regions, and there is a region that is categorized as false positive based on imaging or clinical followup.
 - (4) False negative patient: in the absence of True Positive or False Positive lesions, a patient will be considered a False Negative if there is pathology that is positive for disease and corresponding lesion is negative by PSMA PET.
- ii) Region level evaluation: Each patient will have four evaluable regions (Table 1: prostate bed, pelvis, extrapelvic soft tissue, and bone metastases). Each region will be categorized as true positive or false positive as described above. Regions without evidence of PSMA positive disease or deemed inevaluable will not be included in the analysis.
 - (1) True positive region:
 - (a) Pathology confirms a PSMA avid lesion as a true positive in the region.

STUDY DESIGN

Primary Endpoint

positive predictive value (PPV) on a per-patient and per-region basis of 68Ga-PSMA-11 PET for detection of tumor location confirmed by histopathology or "composite" reference standard (PSA, imaging).

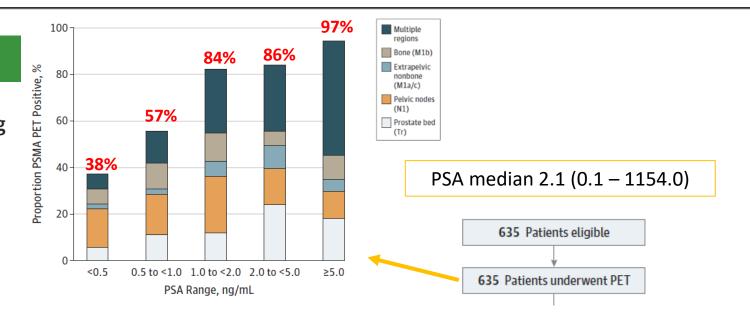
STATS

- **Estimated sample size needed**: ≥107 patients with biopsy and/or surgery follow-up
- Hypothesis: PPV of 70%

3 blinded independent central readers (BICR) with no clinical data available (Majority Score 2:1)

⁶⁸Ga-PSMA-11 PET/CT for biochemical recurrence localization

UCLA + UCSF Phase 3 trial - 635 patients


Research

JAMA Oncology

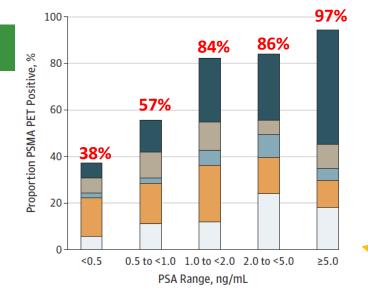
JAMA Oncology | Original Investigation

Assessment of ⁶⁸Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer
A Prospective Single-Arm Clinical Trial

Wolfgang P. Fendler, MD; Jeremie Calais, MD; Matthias Eiber, MD; Robert R. Flavell, MD, PhD; Ashley Mishoe, PharmD; Felix Y. Feng, MD; Hao G. Nguyen, MD, PhD; Robert E. Reiter, MD; Matthew B. Rettig, MD; Shozo Okamoto, MD; Louise Emmett, MD; Helle D. Zacho, MD; Harun Ilhan, MD; Axel Wetter, MD; Christoph Rischpler, MD; Heiko Schoder, MD; Irene A. Burger, MD; Jeannine Gartmann; Raven Smith; Eric J. Small, MD; Roger Slavik, PhD; Peter R. Carroll, MD, MPH; Ken Herrmann, MD; Johannes Czernin, MD; Thomas A. Hope, MD

⁶⁸Ga-PSMA-11 PET/CT for biochemical recurrence localization

UCLA + UCSF Phase 3 trial - 635 patients

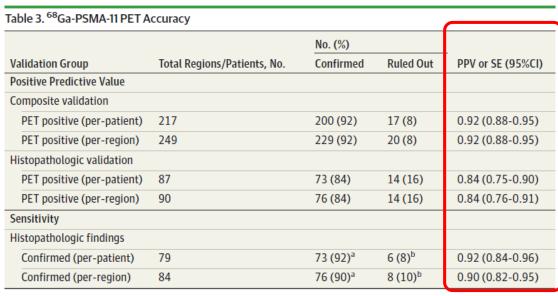

JAMA Oncology

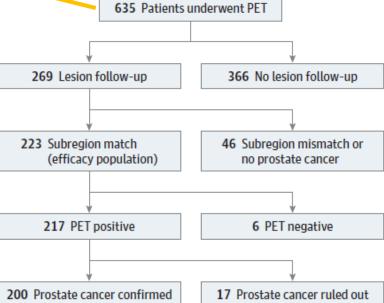

JAMA Oncology | Original Investigation

Research

Assessment of ⁶⁸Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer
A Prospective Single-Arm Clinical Trial

Wolfgang P. Fendler, MD; Jeremie Calais, MD; Matthias Eiber, MD; Robert R. Flavell, MD, PhD;
Ashley Mishoe, PharmD; Felix Y. Feng, MD; Hao G. Nguyen, MD, PhD; Robert E. Reiter, MD;
Matthew B. Rettig, MD; Shozo Okamoto, MD; Louise Emmett, MD; Helle D. Zacho, MD; Harun Ilhan, MD;
Axel Wetter, MD; Christoph Rischpler, MD; Heiko Schoder, MD; Irene A. Burger, MD; Jeannine Gartmann;
Raven Smith; Eric J. Small, MD; Roger Slavik, PhD; Peter R. Carroll, MD, MPH; Ken Herrmann, MD;
Johannes Czernin, MD; Thomas A. Hope, MD


635 Patients eligible


Multiple regions

Bone (M1b)

Extrapelvic

nonbone (M1a/c)

Fendler WP et al. JAMA oncol. 2019

2 PIVOTAL STUDIES

2 pivotal studies

Biochemical Recurrence

UCLA NCT02940262 n=250

n=635

UCSF NCT03353740 n=385

Initial Staging before surgery n=277

UCLA NCT03368547 n=130

UCSF NCT02611882, NCT02919111 n=147

STUDY DESIGN

Primary Endpoint

Se, Spe, PPV, NPV, of 68Ga-PSMA-11 PET for the detection of regional nodal metastases compared to histopathology at radical prostatectomy on a per patient basis and using nodal regional correlation (left/right/other) in patients with intermediate to high-risk prostate cancer

STATS

- Estimated sample size needed: 61 pN1 patients (= with nodal metastases per pathology)
- > **Hypothesis**: Sensitivity of 65%

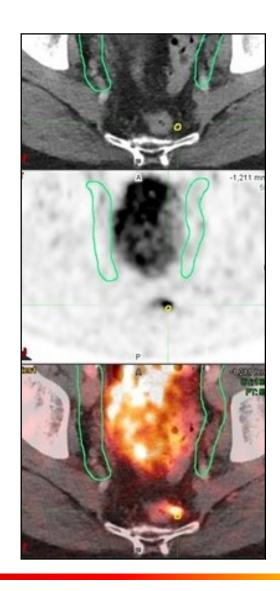
3 blinded independent central readers (BICR) with no clinical data available (Majority Score 2:1)

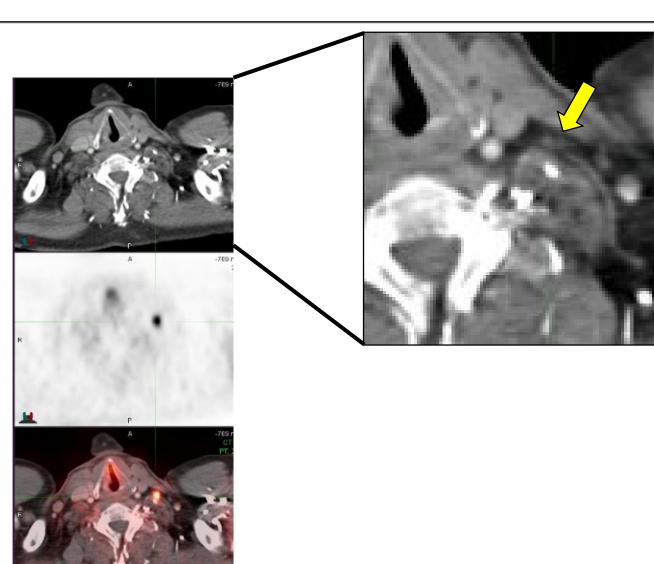
RESULTS: SENSITIVITY AND SPECIFICITY

123 / 325 (38%) patients underwent surgery = efficacy cohort

Table 5: Patient-Level Performance of Ga 68 PSMA-11 PET for Detection of Pelvic Lymph Node Metastasis* in the PSMA-PreRP Study (n=123)

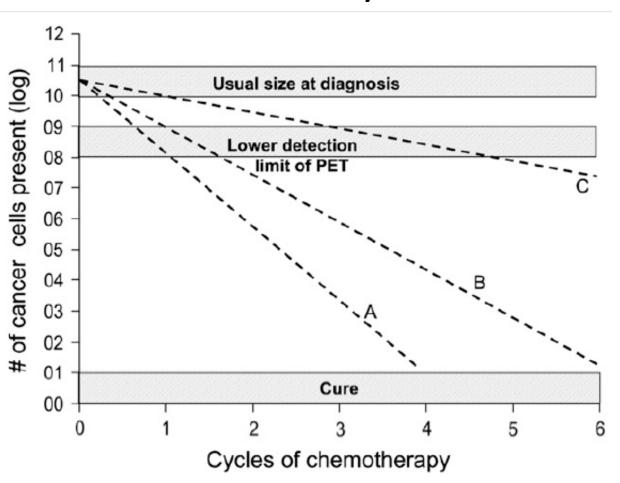
		Histopa	Predictive value**	
	_	Positive	Negative	(95% CI)
				PPV
PET	Positive	14	9	61% (41%, 81%)
scan				NPV
	Negative	16	84	84% (79%, 91%)
Total		30	93	
Diagnostic performance		Sensitivity	Specificity	
(95% CI)		47% (29%, 65%)	90% (84%, 96%)	


^{*}with region matching where at least one true positive region defines a true positive patient


Among the pool of six readers, sensitivity ranged from 36% to 60%, specificity from 83% to 96%, positive predictive value from 38% to 80%, and negative predictive value from 80% to 88%.

^{**}PPV: positive predictive value, NPV: negative predictive value

SMALLEST LYMPH NODE PSMA PET CAN DETECT



SMALLEST LESION PET CAN DETECT

FDG PET/CT

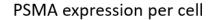
 $0.4 - 1.0 \text{ cm} = 0.1 - 1.0 \text{ grams} = 10^8 - 10^9 \text{ cells}$

Negative PET scan

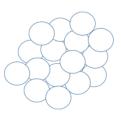
> no cancer cells present

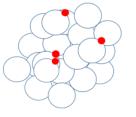
OR

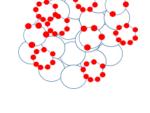
 \geq 10⁷ cells ~microscopic

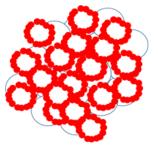

RL Wahl, J Nucl Med 2009

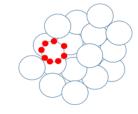
SMALLEST LESION PET CAN DETECT

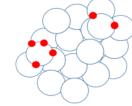


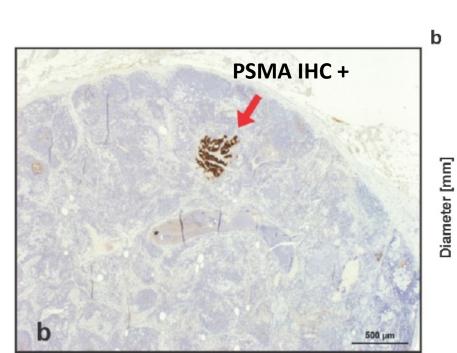


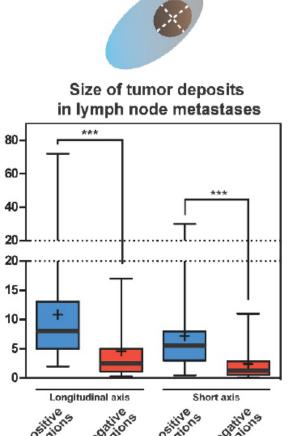

PSMA expression per tumor lesion


TARGET EXPRESSION

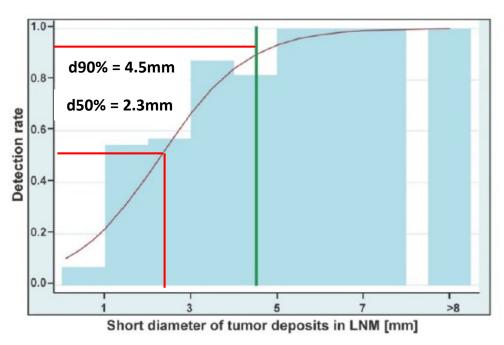




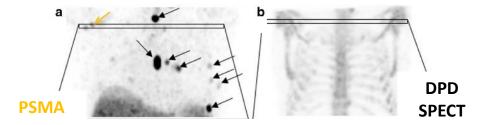



TARGET EXPRESSION HETEROGENITY

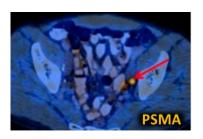
- Per Cell
- Per Lesion
- Per Organ
- Per Patient

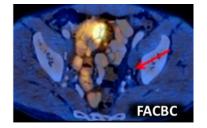

SMALLEST LESION PSMA PET CAN DETECT

MICROMETASTASIS

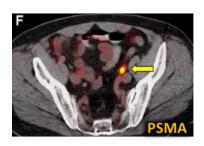


Prostate Cancer **ADVANCED** PET imaging Biological Target


PSMA PET = CURRENT MOST SENSITIVE IMAGING



PSMA PET superior to Conventional Imaging



PSMA PET superior to Choline PET

PSMA PET superior to Fluciclovine PET

Pyka et al. Eur J Nucl Med Mol Imaging 2016
Janssen JC et al Eur Radiol 2018
Lengana et al. Clin Genitourin Cancer 2018
Esen T, et al.. Eur Urol Focus 2019
Zacho et al. EJNMMI Research 2020
Hofman M et al Lancet 2020
Lenis A et al. Eur Urol Oncol 2020

Afshar-Oromieh A, et al. Eur J Nucl Med Mol Imaging 2014
Morigi JJ et al. J Nucl Med. 2015
Schwenck J, et al. Eur J Nucl Med Mol Imaging 2017
Cantiello F, et al. Clin Genitourin Cancer 2018
Alonso O, et al. Eur J Hybrid Imaging 2018
Treglia G, et al. Am J Nucl Med Mol Imaging 2019
Witkowska-Patena E, et al. Clin Nucl Med, 2019

Calais J, et al. J Nucl Med 2018

Calais J, et al. Lancet Oncol 2019

Tan N et al Radiology 2020

PSMA Overexpression >> Upregulated Metabolism

AXUMIN = Standard-of-Care

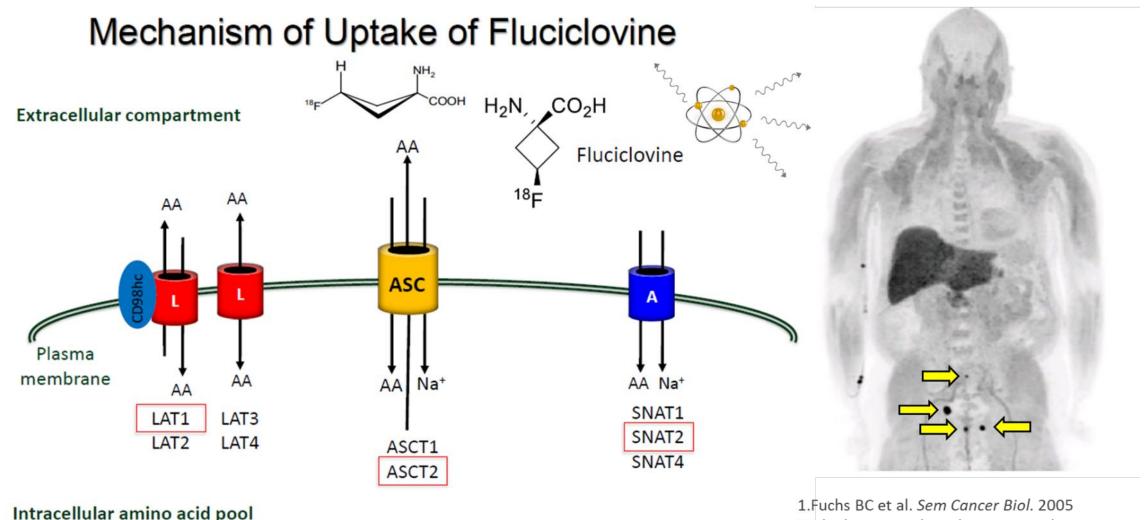
FDA approved in **2016**

FDA Approves ¹⁸F-Fluciclovine and ⁶⁸Ga-DOTATATE Products

J Nucl Med. 2016;57:9N.

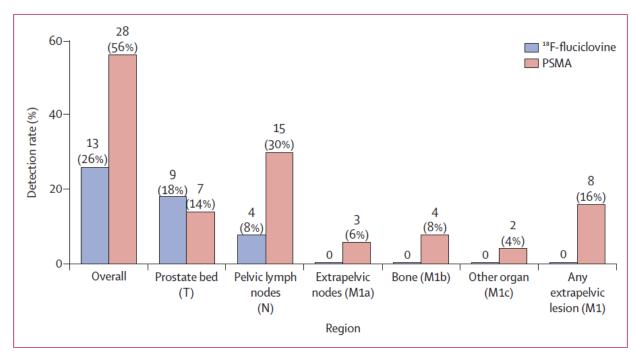
Fluciclovine = FACBC = Standard of Care PET/CT imaging for patients with prostate cancer recurrence

Category 2A:


Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Procedure	Appropriateness Category	Relative Radiation Level
C-11 choline PET/CT skull base to mid-thigh	Usually Appropriate	***
MRI pelvis without and with IV contrast	Usually Appropriate	0
F-18 fluciclovine PET/CT skull base to mid- thigh	Usually Appropriate	ବଳବଳ
CT abdomen and pelvis with IV contrast	May Be Appropriate	***
MRI-targeted biopsy prostate	May Be Appropriate	0
Tc-99m bone scan whole body	May Be Appropriate	ଡଡଡ

AXUMIN = Standard-of-Care



1.Fuchs BC et al. Sem Cancer Biol. 2005 2.Okudaira H et al. Mol Imaging Biol. 2014

UCLA

PSMA vs AXUMIN - Head-to-head comparison

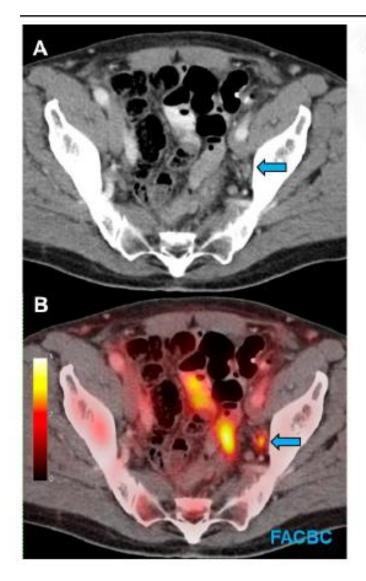
	PSMA	18F-fluciclovine	p value
Detection at the patient level			
Overall	0.67 (0.51 to 0.83)	0·20 (0·04 to 0·36)	0.0020
Detection at the regional level			
Prostate bed (T)	0.65 (0.49 to 0.81)	0-43 (0-27 to 0-59)	0.046
Pelvic lymph nodes (N)	0.76 (0.60 to 0.92)	0.05 (-0.11 to 0.21)	<0.0001
Extrapelvic nodes (M1a)	0.60 (0.44 to 0.76)	-0.02 (-0.18 to 0.14)	0.0025
Bone (M1b)	0.46 (0.30 to 0.62)	-0.03 (-0.19 to 0.13)	0.0051
Other organ (M1c)	0.65 (0.49 to 0.81)	-0.01 (-0.17 to 0.15)	0.016
Any extrapelvic lesion (M1)	0.60 (0.44 to 0.76)	-0.07 (-0.23 to 0.09)	<0.0001

Data are the multi-rater κ statistic (95% CI). Negative κ statistics signify less observed agreement than that expected by chance. 95% CIs overlapping with zero indicate that the observed agreement was statistically indistinguishable from chance agreement. PSMA=prostate-specific membrane antigen.

Table 2: Inter-reader measures of agreement

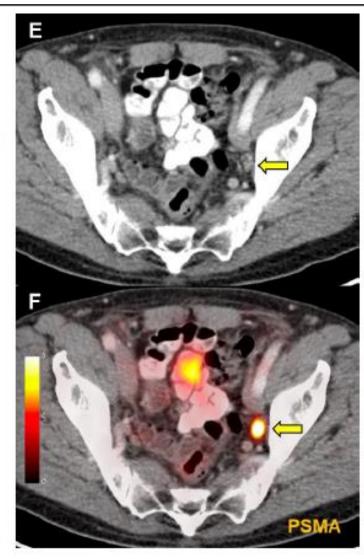
Figure 2: Detection rates per region and per patient (majority consensus reads) PSMA=prostate-specific membrane antiqen.

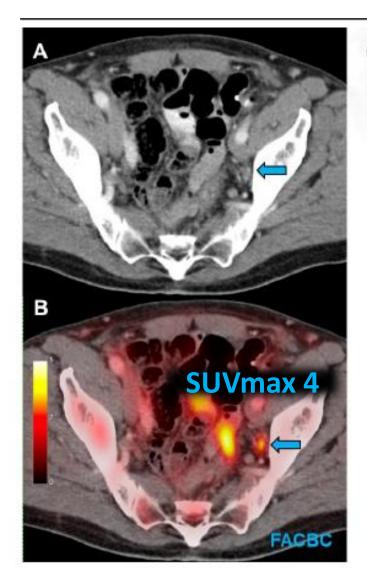
- 50 early BCR patients
- PSA < 2.0 median 0.5
- 3 expert BICR per scan

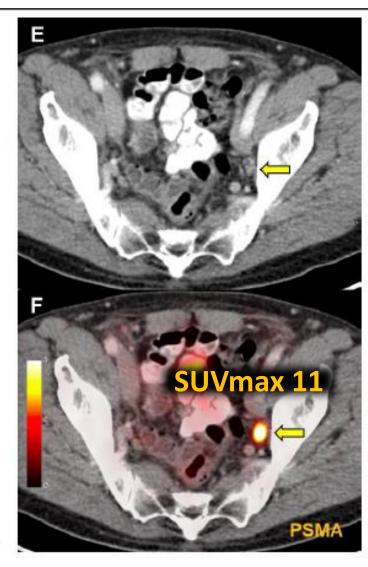

Detection rate = PSMA 56% vs AXUMIN 26%

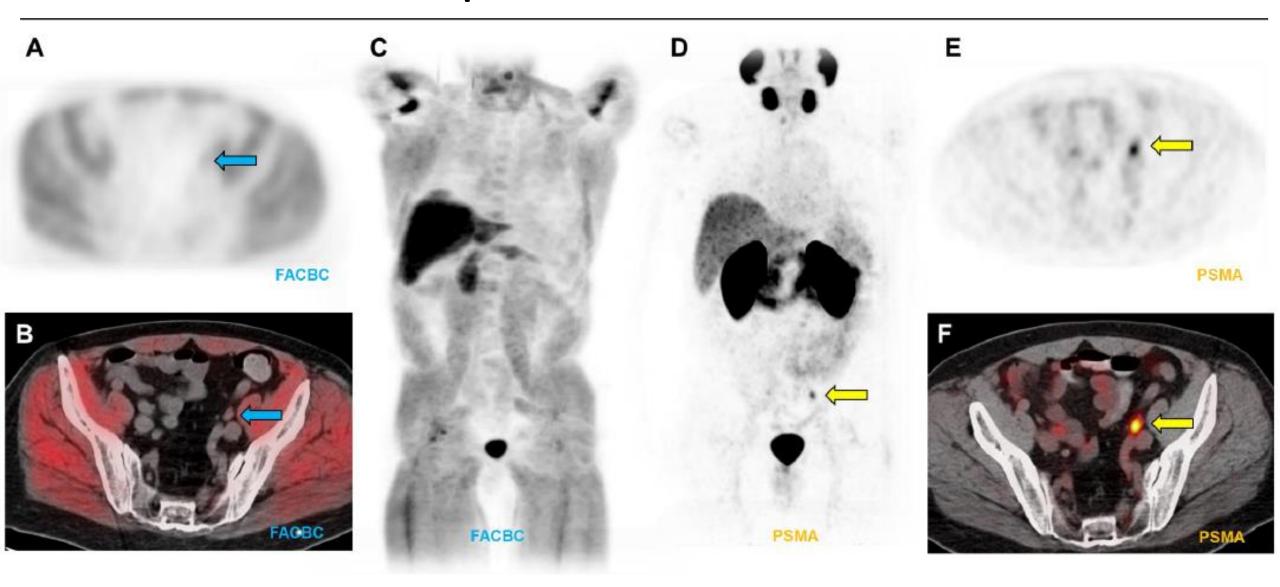
THE LANCET Oncology

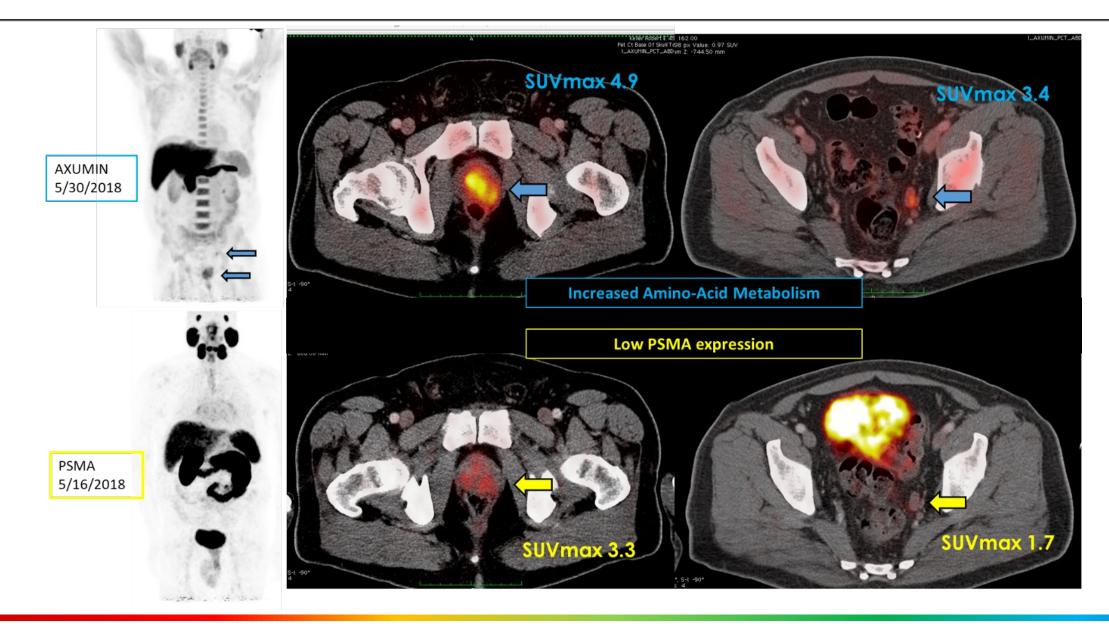
Calais J, et al. Lancet Oncol 2019


PSMA vs AXUMIN – Example 01




PSMA vs AXUMIN – Example 01




PSMA vs AXUMIN – Example 02

UCLA

One Case

PROSTATE CANCER PET IMAGING BIOLOGICAL TARGET

10 .		
Pub Med.gov	PubMed ▼	
US National Library of Medicine National Institutes of Health		Advanced

Format: Abstract -

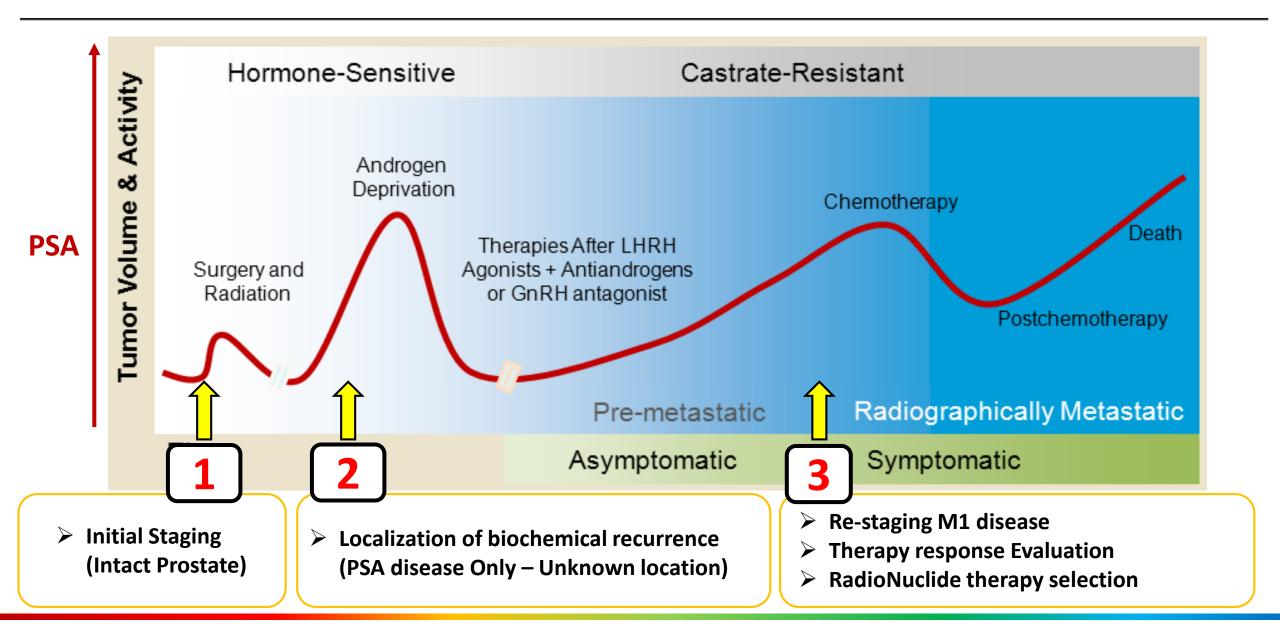
Lancet Oncol. 2019 Nov;20(11):e609-e610. doi: 10.1016/S1470-2045(19)30654-0.

What is the best PET target for early biochemical recurrence of prostate cancer?

Calais J¹, Ceci F², Eiber M³, Hope TA⁴, Hofman MS⁵, Rischpler C⁶, Bach-Gansmo T⁷, Fendler WP⁸, Czernin J⁹.

Author information

PMID: 31674314 DOI: 10.1016/S1470-2045(19)30654-0


Upregulated Metabolism (GLUT, CK, LAT1, ASCT2)

VS

PSMA Overexpression

Indications

PSMA PET based new practices

- Disease Stage Redefinition Migration
- Patient selection PSMA PET = biomarker

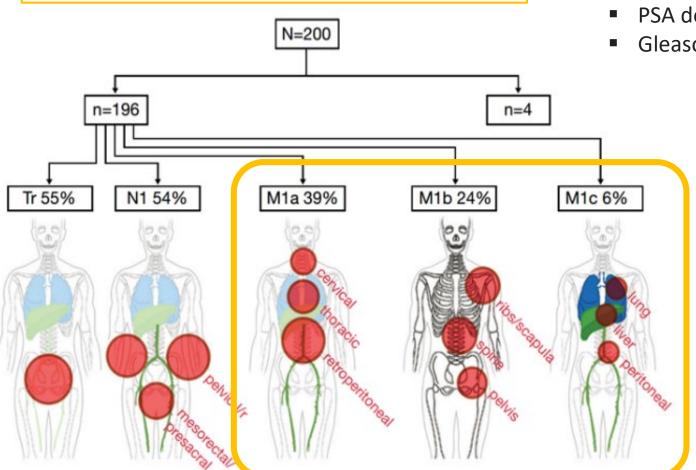
PSMA PET based new practices

- Disease Stage Redefinition Migration
- Patient selection PSMA PET = biomarker

PSMA PET STAGE MIGRATION

PSMA PET IN NMCRPC

"SPARTAN-like" - "ARAMIS-like" - "PROSPER-like" **High-risk nmCRPC**


- > PSA >2 ng/mL
- ➤ high risk for M1 disease
 - PSA doubling time ≤10 months
 - Gleason score ≥8

PSMA PET IN NMCRPC

"SPARTAN-like" - "ARAMIS-like" - "PROSPER-like" **High-risk nmCRPC**

- > PSA > 2 ng/mL
- ➤ high risk for M1 disease
 - PSA doubling time ≤10 months
 - Gleason score ≥8

- University of Essen
- Peter MacCallum Cancer Centre, Melbourne
- University of California Los Angeles
- Ludwig-Maximilian-University, Munich
- Université de Montréal
- University of California San Francisco
- Harvard Medical School, Boston
- Technical University of Munich
- Janssen Research & Development

55% M1

PSMA PET STAGE MIGRATION

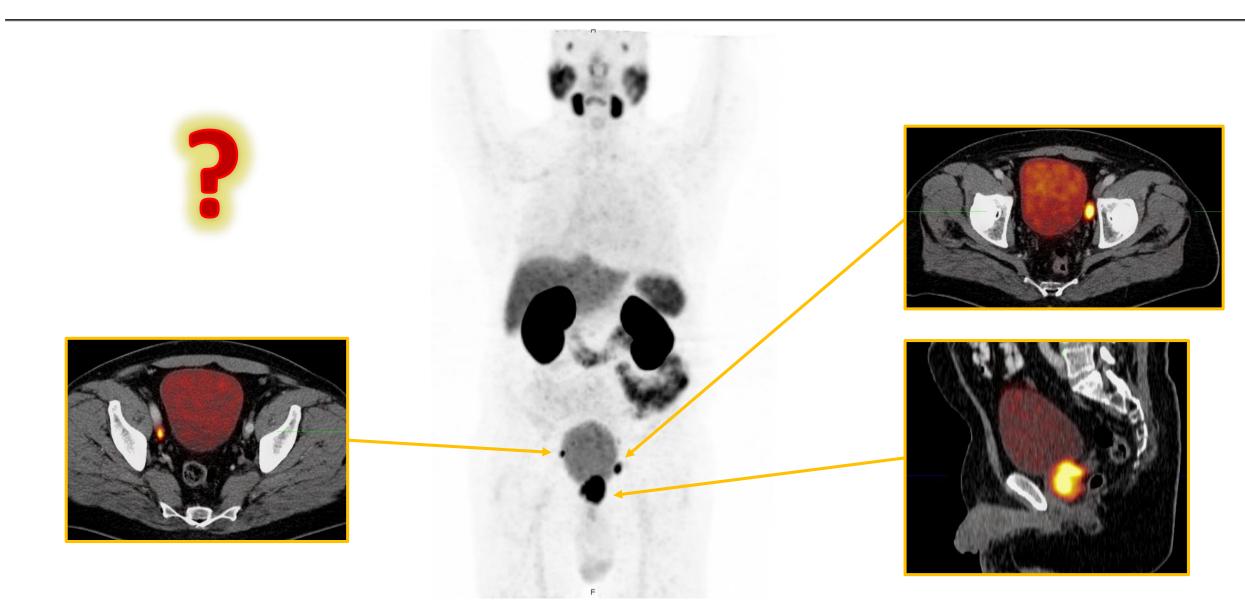
PSMA PET IN EARLY CRPC

Before guidelines definition thresholds

- PCWG3 (PSA≥ 1.0 ng/mL)
- ➤ EAU (PSA≥ 2.0 ng/mL)
- n= 55 patients with
 - rising PSA during continuous ADT
 - PSA <3 ng/mL

- PSMA-PET/CT positive in 41/55 (75%)
- CT positive in 18/55 (33%)
- Stage migration to PET-M1 disease in 25/55 (45%)

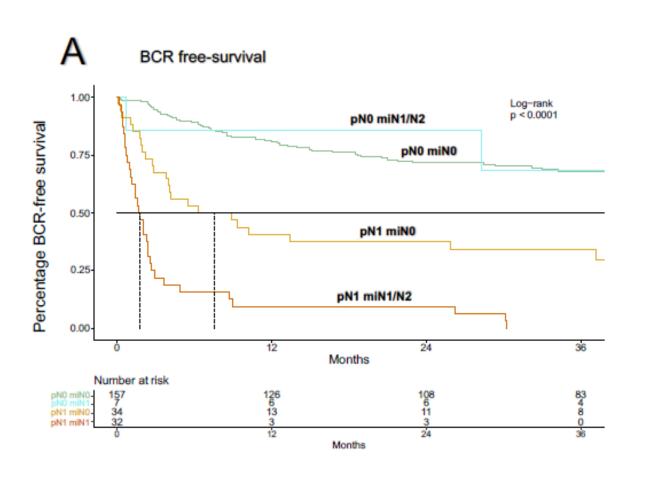
PSMA-PET/CT findings	Total (n=55)	Pre-PCWG3 PSA: <1.0 ng/mL (n=21)	Early PCWG3 PSA: 1.0-<2.0 ng/mL (n=11)	Early EAU PSA: 2.0-≤3.0 ng/mL (n=23)
Negative	14 (25)	10 (48)	0 (0)	4 (17)
Tr/N1 only	16 (29)	6 (29)	3 (27)	7 (30)
Local recurrence (Tr) Pelvic lymph nodes (N1)	9 (16)	3 (14)	1 (9)	5 (22)
retite tymph hedes (1(1)	9 (16)	3 (14)	2 (18)	4 (17)
Any M1	25 (45)	5 (24)	8 (73)	12 (52)
Extrapelvic lymph nodes (M1a)	15 (27)	3 (14)	3 (27)	9 (39)
Bone (M1b)	13 (24)	3 (14)	4 (36)	6 (26)
Soft tissue/ visceral (M1c)	2 (4)	0 (0)	2 (18)	0 (0)
N/M disease extent	n=34	n=8	n=10	n=16
Unifocal (1)	6 (18)	2 (25)	1 (10)	3 (19)
Oligometastatic (2-5)	17 (50)	4 (50)	9 (90)	4 (25)
Multiple/ disseminated (≥6)	11 (32)	2 (25)	0 (0)	9 (56)

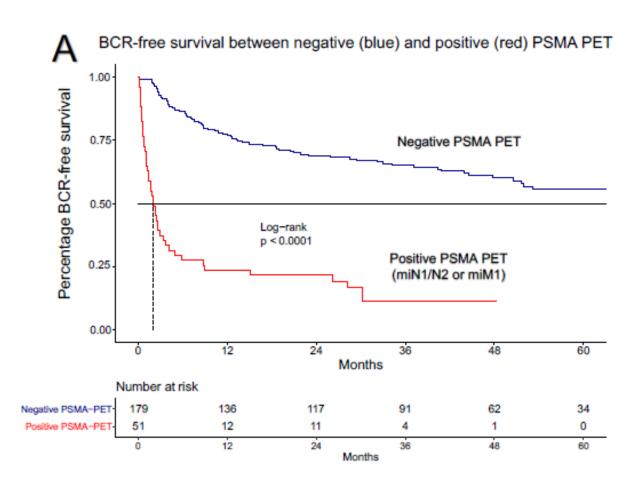

PSMA PET based new practices

- Disease Stage Redefinition Migration
- Patient selection PSMA PET <u>staging</u> = biomarker

WHAT TO DO WITH PSMA PET N1 DISEASE?

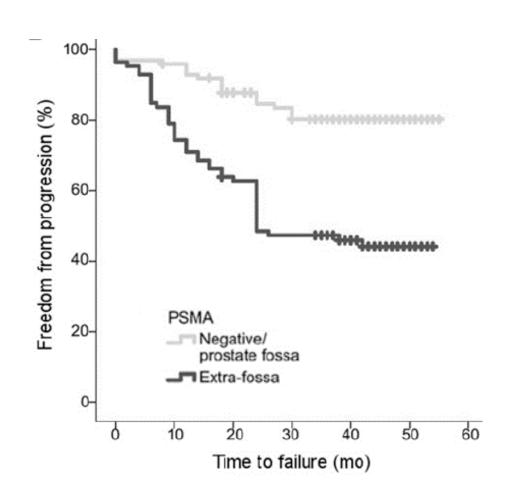
How to integrate PSMA PET to the practice for better outcome?

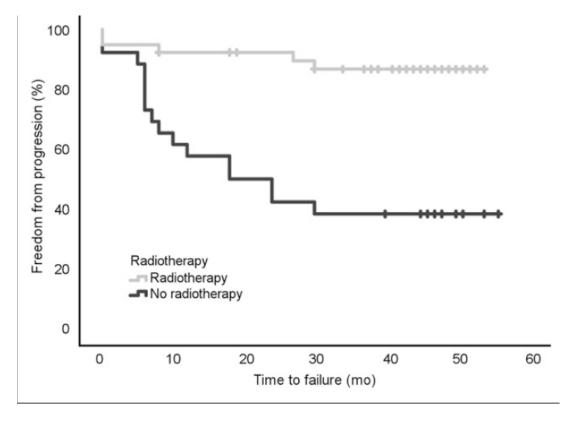

- PSMA PET diagnostic performances well established:
 - **→** THE BEST BUT STILL NOT PERFECT (Micrometastasis +++)
- New redefinition of disease stage
 - ex: M0 conventional = PSMA M1 ?
 - ex: M0 conventional ≠ PSMA M0 ?
 - ex: PSMA N0 = Micro N0 vs Micro N1 ?
 - ex: PSMA N1 = Micro N1 M0 vs Micro N1 M1 ?
- Significance on appropriate management
 - PSMA N0 = surveillance vs. pelvic LN treatment (surgery or RT) ?
 - PSMA N1 = not surgical candidate ? (too late)
 - PSMA N1 = RT boost ? extend RT field coverage ?
 - PSMA N1 = systemic therapy ?


Fendler WP, et al. Clin Cancer Res. 2019

W Weber J Nucl Med 2020

PSMA PET NO PREDICTIVE OF RP OUTCOME





PSMA PET NO PREDICTIVE OF SRT OUTCOME

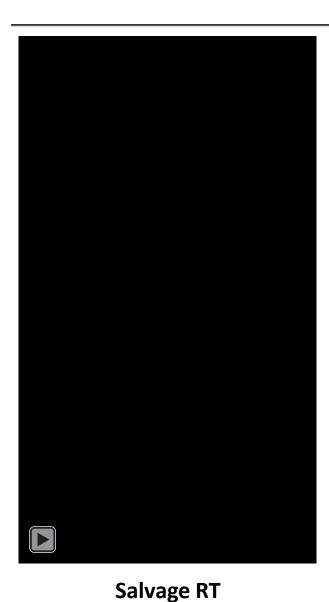


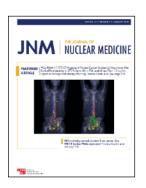
FIGURE 3. FFP in men with negative scan results who underwent sR7 vs. men who were observed over 3 y (P < 0.0001).

IMPACT on RT Planning – PSMA PET biomarker for patient selection

PSMA PET/CT can show

Disease outside of the standard radiation fields

Salvage RT:

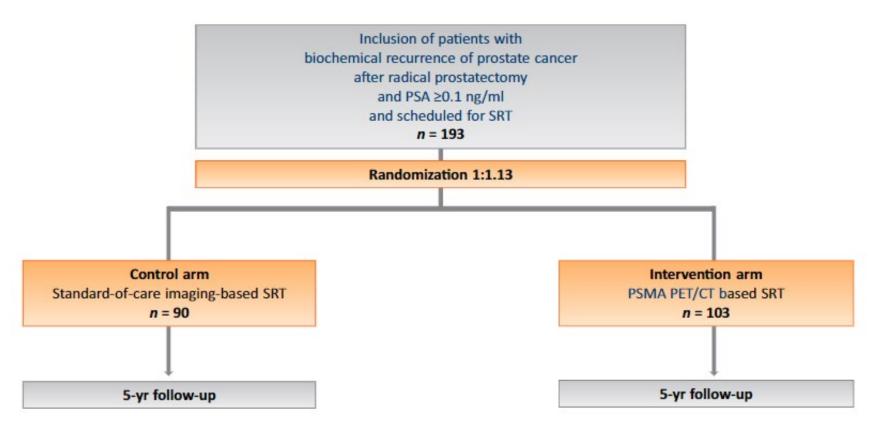

Major impact in 19% of patients with Early Recurrence after surgery (PSA <1.0)

• Definitive RT:

Major impact in **17%** of patients with intermediate to high-risk disease

Best Paper of the Year 2018

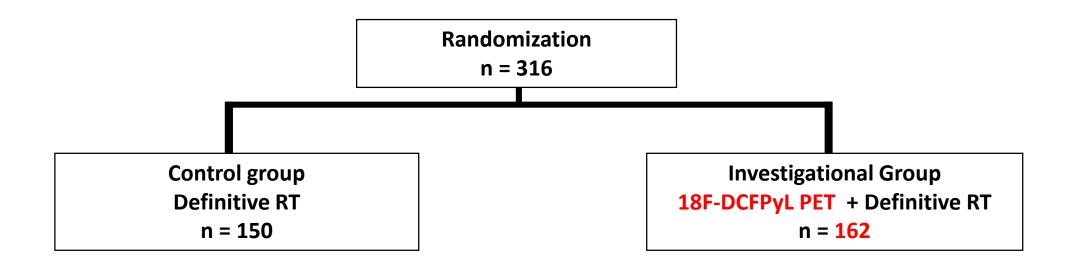
Definitive RT


PSMA-SRT Phase 3 Trial - NCT03582774

STUDY DESIGN

Calais et al. BMC Cancer (2019) 19:18 https://doi.org/10.1186/s12885-018-5200-1 **BMC Cancer** STUDY PROTOCOL Randomized prospective phase III trial of ⁶⁸Ga-PSMA-11 PET/CT molecular imaging for prostate cancer salvage radiotherapy planning [PSMA-SRT] Jeremie Calais^{1*} D. Johannes Czernin^{1*}, Wolfgang P. Fendler^{1,2}, David Elashoff³ and Nicholas Nicholas G. Nickols^{4,5} Abstract Background: Salvage radiotherapy (SRT) for prostate cancer (PCa) recurrence after prostatectomy offers long-term biochemical control in about 50-60% of patients, SRT is commonly initiated in patients with serum PSA levels < 1 ng/mL, a threshold at which standard-of-care imaging is insensitive for detecting recurrence. As such, SRT target volumes are usually drawn in the absence of radiographically visible disease. ⁶⁸Ga-PSMA-11 (PSMA) PET/CT molecular imaging is highly sensitive and may offer anatomic localization of PCa biochemical recurrence. However, it is unclear if incorporation of PSMA PET/CT imaging into the planning of SRT could improve its likelihood of success. The purpose of this trial is to evaluate the success rate of SRT for recurrence of PCa after prostatectomy with and without planning based on PSMA PET/CT. PET/CT scan (free of charge for patients) prior to SRT planning (investigational arm 2, n = 103). The primary endpoint is the success rate of SRT measured as biochemical progression-free survival (BPFS) after initiation of SRT. Biochemical progression is defined by PSA ≥ 0.2 ng/mL and rising. The randomization ratio of 1:1.13 is based on the assumption that approximately 13% of subjects randomized to Arm 2 will not be treated with SRT because of PSMA-positive extra-pelvic metastases. These patients will not be included in the primary endpoint analysis but will still be followed. The choice of treating the prostate bed alone vs prostate bed and pelvic lymph nodes, with or without androgen deprivation therapy (ADT), is selected by the treating radiation oncologist. The radiation oncologist may change the radiation plan depending on the findings of the PSMA PET/CT scan. Any other imaging is allowed for SRT planning in both arms if done per routine care. Patients will be followed until either one of the following conditions occur: 5 years after the date of initiation of randomization, biochemical progression, diagnosis of metastatic disease, initiation of any additional salvage therapy, death Discussion: This is the first randomized phase 3 prospective trial designed to determine whether PSMA PET/CT molecular imaging can improve outcomes in patients with PCa early BCR following radical prostatectomy. Acronym: PSMA-SRT Phase 3 trial. (Continued on next page Department of Molecular & Medical Pharmacology, Ahmanson Translational heranostics/ Imaging Division, University of California, Los Angeles, USA Full list of author information is available at the end of the article © The Author(s) 2019 Open Acres This article is distributed under the terms of the Creative Commons Attribution 40. International License (http://creativecommon.cog/licenses/by/40/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give apprepriate credit to the original authority and the source, provide a link to the Circarbe Commons License, and indicate life language were made. The Circarbe Commons Ruble, Domain Dedication water

creativecommors.org/publicdomain/tero/1.0/) applies to the data made available in this article, unless otherwise stated.



Enrollment Complete

Calais J et al. *BMC cancer* 2019 Calais J et al *Eur Urol Focus* 2020

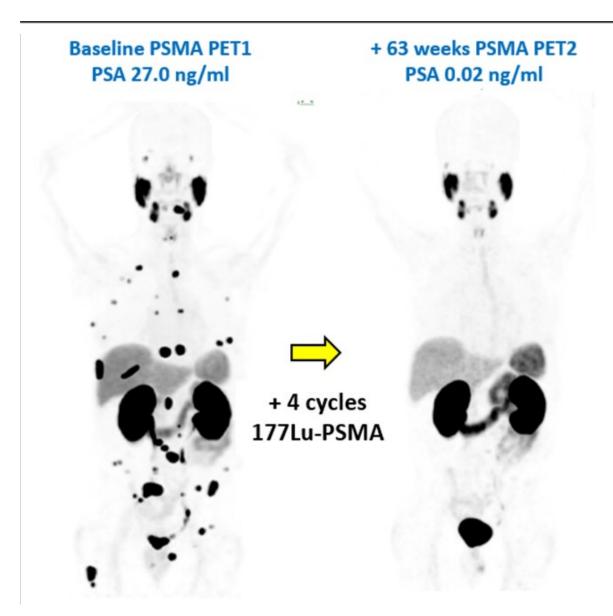
Phase 3 randomized trial of PSMA PyL PET definitive RT [PSMA DRT]

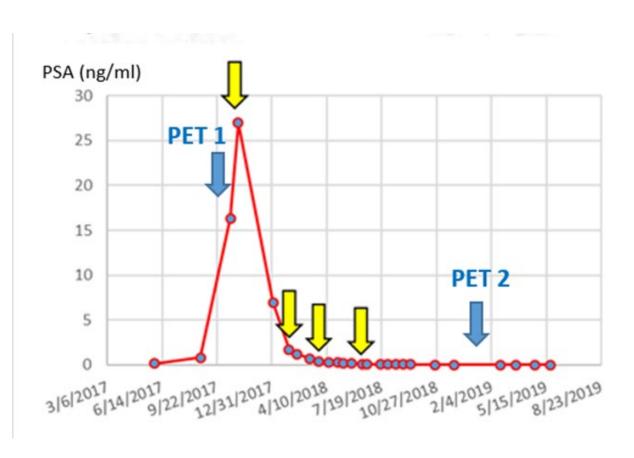
Patient candidate for primary definitive RT

STUDY OPEN

IRB#20-000378 NCT04457245 Investigator Initiated IND #147,591

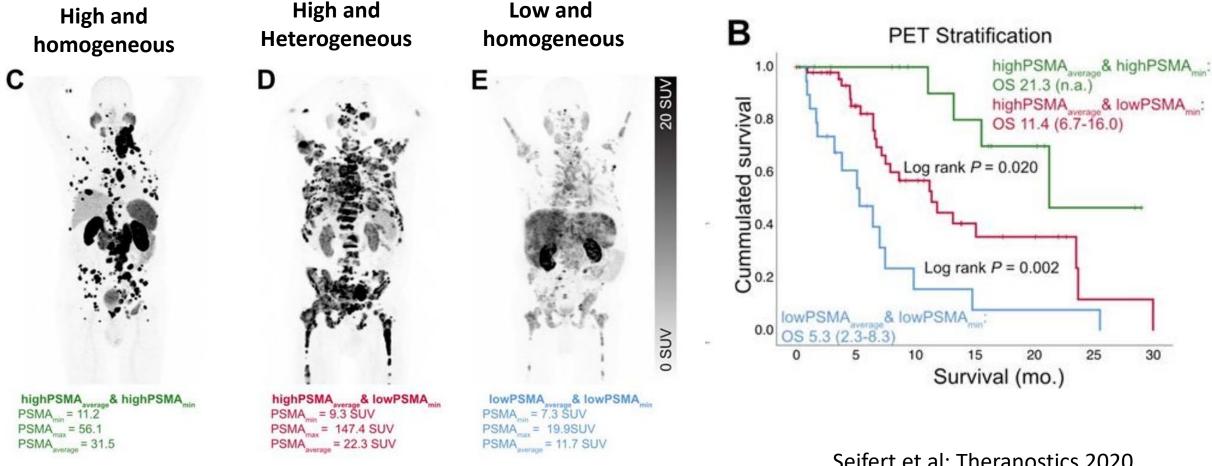
Cross-reference Industry IND 129,952


PSMA PET based new practices



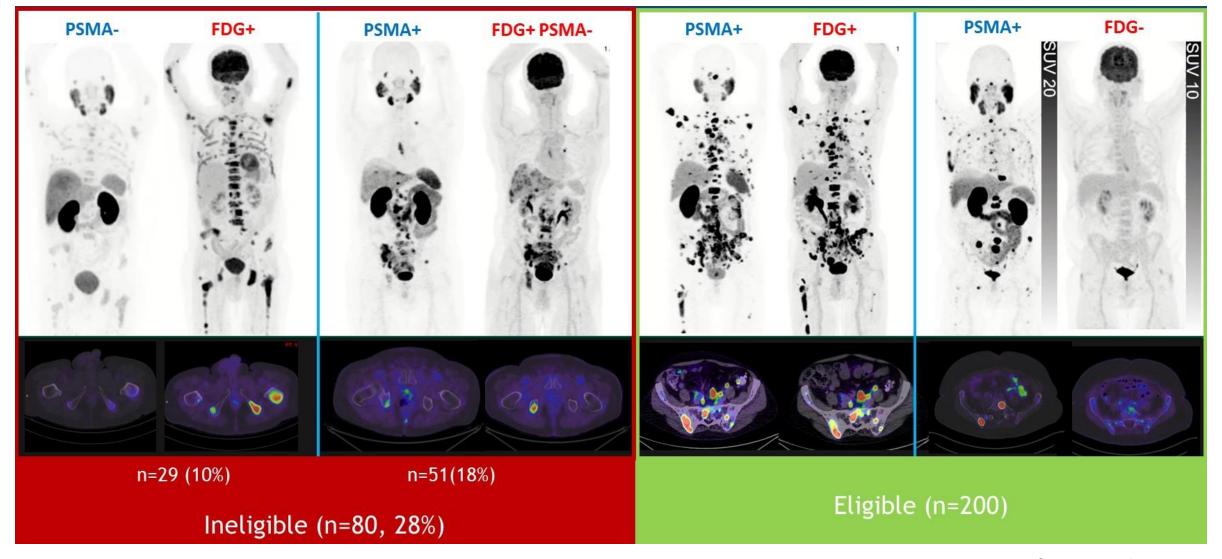
- Disease Stage Redefinition Migration
- Patient selection PSMA <u>expression by PET</u> = biomarker

¹⁷⁷Lu-PSMA-617 Radionuclide Therapy



UCLA

RESPONSE TO ¹⁷⁷Lu-PSMA-617 Radionuclide Therapy


Retrospective N= 85 pts

Seifert et al; Theranostics 2020

Combined PSMA and FDG PET for patient selection

PERSPECTIVES

- Reimbursement
- Availability multiple players
- Integration into clinical guidelines
- Integration into clinical trials
 - Biomarker
 - Patient selection/stratification
 - Therapy response assessment
- Artificial intelligence automatic software

USEFUL LINKS

FDA Label

UCSF NDA https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/2126430rig1s000TOC.cfm
UCLA NDA https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/2126420rig1s000TOC.cfm

• ⁶⁸Ga-PSMA-11 NDA Approval: A Novel and Successful Academic Partnership"
Part I: ⁶⁸Ga-PSMA-11 development and regulatory approval process https://doi.org/10.2967/jnumed.120.260455
Part II: Key CMC Information for 68Ga-PSMA-11 https://doi.org/10.2967/jnumed.120.260455

- Oliver Sartor Talks with Thomas A. Hope, Jeremie Calais, and Wolfgang P. Fendler About FDA Approval of PSMA https://jnm.snmjournals.org/content/62/2/146
- https://www.snmmi.org/Research/Content.aspx?ItemNumber=35274
- "Guidance for Industry: ANDA Submissions-Content and format" (June 2019, https://www.fda.gov/media/128127/download)
- "PET Drug Applications Content and Format for NDAs and ANDAs" (August 2011, https://www.fda.gov/media/72271/download)
- "Referencing Approved Drug Products in ANDA Submissions" (October 2020, https://www.fda.gov/media/102360/download)

UCLA Ahmanson Translational Theranostics Division Research Program

THIS IS A TEAM WORK!

Shaojun Zhu
•
Soosan Roodbari
Jeannine Gartmann
Stephanie Lira
Kiara Booker
Rejah Alano
Pan Thin
Kathleen Nguyen
Wesley Armstrong

Ameen Seyedroudbari

Vincent Lok

Fiona Griffin

Laura Gosa

Amber Hain

Johannes Czernin Martin Allen-Auerbach **Andrew Quon** Shad Bahri Pawan Gupta Heinrich Schelbert Daniel Silverman Aria Razmaria Meredith Lewis Artineh Hayrapetian Ida Sonni Andrei Gafita Masatoshi Hotta Matthias Benz

Magnus Dahlbom Catherine Meyer **David Sennung** Roger Slavik Giuseppe Carlucci John Williams Vivian Lau Linda Gardner Liliana Ciuca

Matthias Eiber Ken Herrmann Francesco Ceci Giulia Polverari Thomas Hope Uwe Haberkorn Ebrahim Delpassand Michael Hofman Nicholas Nickols Amar Kishan Matthew Rettig **Robert Reiter** Stuart Holden David Elashoff

Wolfgang Fendler

Caius Radu Timothy Donahue David Nathanson David Ulmert David Dawson Katharina Lueckerath **Christine Mona** Andreea Stuparu Thuc Le Joe Capri Soumya Poddar Evan Abt Liu Wei **Kyle Current** Joel Almajano Marco Taddio

TRANSLATIONAL PROSTATE CANCER RESEARCH PROGRAM

UCSF, UCLA Gain FDA Approval for Prostate Cancer Imaging Technique

Method is 'Game Changer' That Should Become Standard of Care, Say Researchers From Both Universities Who Validated Its Effectiveness

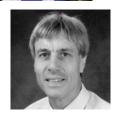
By <u>Hirabeth hernander</u> and Duane Bates

The University of California's two nationally ranked medical centers, UC San Francisco and UCLA, and their nuclear medicine teams have obtained approval from the U.S. Food and Drug Administration to offer a new imaging technique for prostate cancer that locates cancer lesions in the pelvic area and other parts of the body to which the tumors have migrated.

Known as prostate-specific membrane antigen PET imaging, or PSMA PET, the technique uses positron emission temography in conjunction with a PET sensitive drug that is highly effective in detecting prostate cancer throughout the body so that it can be better and more selectively treated. The PSMA PET scan also identifies

MD, chair of the Urology Department, stand at the PACS workstation where the images from the PSMA PETs are viewed

UCLA



THE FDA APPROVAL OF 68GA-PSMA-11 PET: AN ACADEMIC COLLABORATIVE JOURNEY

Assistant Professor, Nuclear Medicine and Theranostics Director, Clinical Research Program

PINTAD MEETING 01 - 28 - 2021

BACK-UP