

Local (Site) Clinical Trial Reads and Centralized Clinical Trial Reads

A look at underlying causes of perceived discordance (and why it may not be what we thought)

Mint Medical Kelie H Luby, VP Clinical Trials

Why speak on this topic?

- Still relevant
- Many efforts to 'minimize'/'control' discordance
 - Site and central select same target lesions
 - Site and central adjudication
- Larger Question:
 - Is it solvable and should we solve it?
 - What does solving it mean?
- Many avenues to explore
- Today's avenue....
 - Workflow, Workflow
 - Reporting
 - Consumers
 - Training
 - Economics

Background

- Medicinal Chemist (part 1)
- Scientific and Medical Communication (part 2)
- 10 years at Perceptive/ PAREXEL
- 2 years at Imaging Endpoints

2016.....Mint Medical Work with many CROs, Academic and Cancer Centers

A philosophical look at data

- Bruno Latour Immutable Mobiles
 - Science in Action: How to follow scientist and engineers through society (1987)
- Describes how information is passed from between 'agents'
 - Newspaper, Scientific Publication, Response Criteria, Radiology Report
 - Premise: Easily transported between agents (people/institutions) and has <u>permanence</u>

Importance:

- Allows coalition building around an idea
- Proof (map)
- More important comparable
- The act of making an concept permanent through creating a 'immutable mobile' does not mean that EXACT information exists
- Unification around an idea.

Site and Central: What is the difference?

Clinical Site Reads (Academic/ Cancer Centers)

- These are the hospital and Cancer Centers where the patient is treated
- PI (ex. Oncologist) oversees response evaluation read
- May have a specific Radiology Response Assessment form (tumor form or RECIST form) or PI extracts information from clinical report
- Oncologist may perform their own tumor measurements
- Oncologist and radiologist may interact to determine final response for patient
- A clinical trial can have 100's of sites and investigators
 - An academic center/cancer center is one site
- PI/Oncologist treats the patient

Central Reads (Imaging Core Lab/ Imaging CRO)

- These are dedicated groups/companies that DO NOT treat the patient
- Interact with Pharma/Biotech and Sites to obtain the images
- Train readers and standardize the response evaluation to minimize variability
- High quality data records
- Small group of trained readers with expertise in response criteria doing a pure review of the imaging data in accordance with standardized criteria in a highly controlled fashion
- Core Lab Radiologist are NOT treating the patient:
 - Not influenced by the patient's personal history/current health
 - Not influenced by investigator

Central Review = Better

Central Review

- Better application of assessment criteria
- Radiologists, etc. are better trained on criteria and how to review images in clinical trials
- Radiologists select and follow the disease burden more carefully
- Fewer radiologist readers leads to less variability in reads
- The same radiologist usually reviews the case for a given subject
- Better quality control and monitoring at CROs
- Not influenced by patient/ PI No Bias;
 Blinded

Workflow and Operational Processes

Workflow and Operational Process - Centralized Review- Part 1

- Primary Decision Maker
 - CRO
- End User
 - Sponsor Pharma/Biotech
- Images
 - Sent to CRO from clinical sites
 - Missing imaging is common and challenging to track
 - Find what you don't know you are missing

- Notifications
 - Radiologist notified by CRO when to perform reads
- Reporting and Tracking Tools
 - Dedicated software to track measurements and assessments
 - Edit Checks to prevent errors
- Training
 - Formal and in depth protocol related training
 - Testing cases
 - Reader Qualification

Workflow and Operational Process - Centralized Review-Part 2

- Roles
 - Well defined
 - Project Managers
 - Scientific and Medical Oversight
 - Radiologists and physician specialist readers
 - Data Management
 - Regulatory and Quality Oversight
- Data Management
 - Dedicated teams
 - Well-controlled oversight of data / Universal/ reproducible

- Quality Control
 - Large investment in assuring/maintaining data integrity and adherence to GCP
- Economics (Time and Money)
 - Project Planning -major aspect of the oversight
 - Cost are typically well known and planned
 - Reads are billable (part of contract related fees or at cost)

- Primary Decision Maker
 - Primary Investigator
- End User
 - Patient
- Images
 - Local patient images
 - Images from outside institutions
 - Patients may be on multiple clinical trials
 - Determine where one clinical trial ends and one begins
 - All patient images in an institution may be accessible
 - Which images are applicable (Is that arm x-ray or that shoulder MRI really applicable to the RECIST read?)

- Routine reads and clinical research reads
 - Sometimes performed by same person; sometimes different radiologists
 - Is the routine read provided during the clinical research read?
 - Which 'read' takes priority in the patient response to treatment if discordant?
 - Routine says stable but RECIST says PD – Does the patient stay on trial?

- Reporting and Tracking Tools
 - Sites may have tumor tracking forms
 - RECIST forms
 - Lack of linkage with viewer and measurement tools
 - Homegrown tracking software
 - Directly measure in PACS
 - Oncologist takes measurements from routine radiology report or PACS to do clinical trial assessments
 - Often no 'version control' or tracking over time
 - How do you find the nadir?

- Notifications
 - How does the radiologist doing clinical research reads get notified?
 - How does the radiologist know which criteria to use?
 - What about particular modifications to the protocol?

- Measurements
 - Often no structured or standardized procedure for seemingly routine factors
 - Lesion Locations
 - Use of measurement tools
 - 'eyeballing' right axis
 - Reporting only one axis (wrong axis) without labeling - may be transposed/inferred to be short axis
 - Measuring too many lesions
 - Measuring wrong lesion at follow up due to disharmonized systems

- Training
 - Formal criteria training is a rarity; typically through conferences or On-the-Job
 - No per 'Protocol' training

Study Personnel

- Research Teams vary:
 - From small teams of 2-3 people doing all research reads (Technologist + Radiologist)
 - Moderate size teams with 1-3 primary radiologists with some additional support from other departments (Neuro, Nuclear medicine)
 - Large teams of 30-40 Radiologists and 100+ PIs and study coordinators with other support staff

Roles

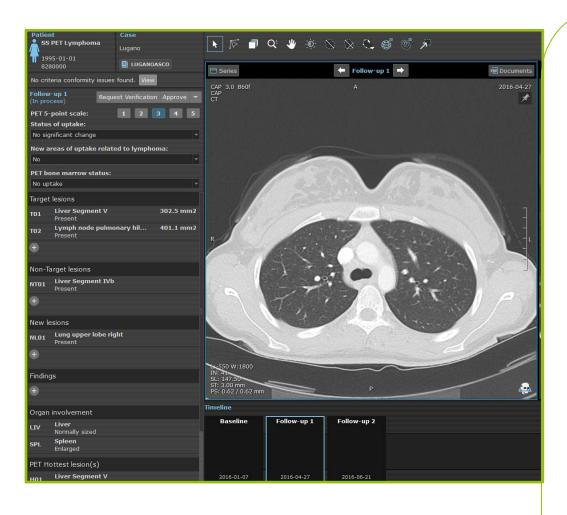
- Study coordinator
- Study Nurse
- Technician may do preliminary review and send to radiologist for approval
- Junior radiologist with approving senior radiologist
- Multiple radiologist reviewing the same case
- PI (sometimes using routine radiology report to determine response assessment)

- Data Management
 - Report Data for Pharma/Biotech into EDC (Medidata RAVE)
 - Reporting is still almost entirely manual data entry even at very large research centers
- Quality Control
 - Most often by virtue of the PI/Research coordinator contacting the radiologist
 - Evaluation is based on impact to patient care/potential patient harm
 - Measurements may often be easily manipulated or modified
 - If systems are not created by design for clinical research work – no HIPPA structure or validation

- Economics (Time and Money)
 - Money:
 - Sometimes clinical research reads are funded
 - Often times there is no 'billing' for research reads
 - Time
- Research reads done by dedicated groups with time slotted in department for reads
- Reads done in evenings and offtime with no dedicated time to do the work

Assessment Criteria

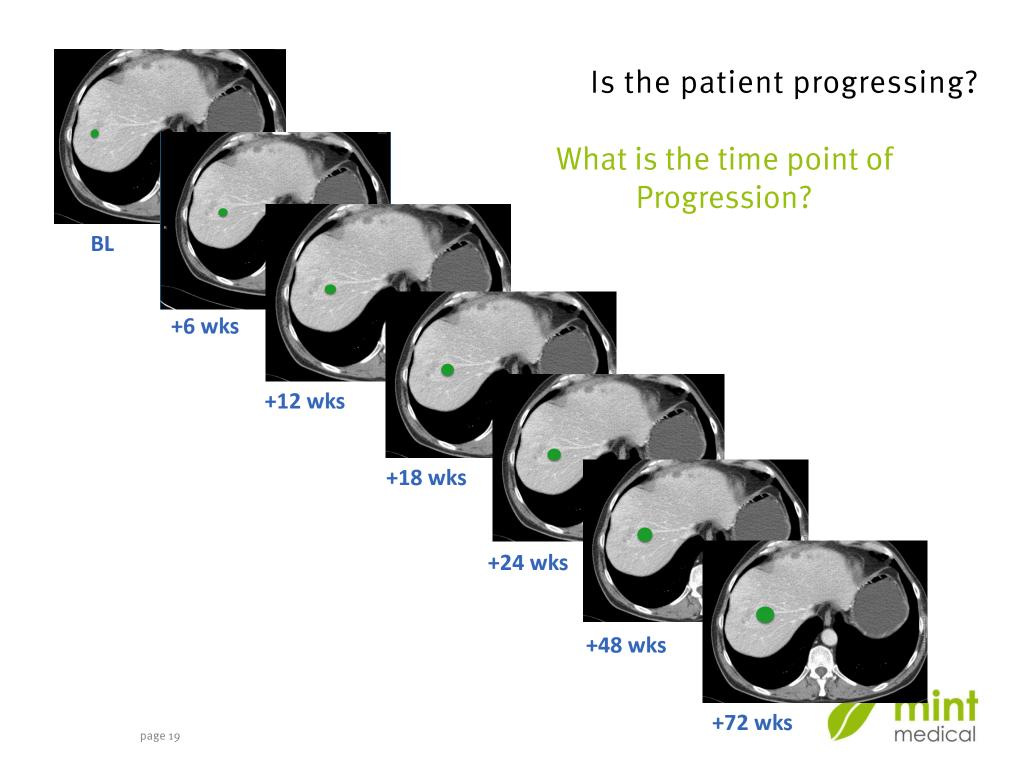
RECIST 1.1	PCWG2/3	Brodeur
irRC	RECIL	
irRECIST	mRECIST HCC	BI-RADS
iRECIST	PERCIST	LI-RADS
RECIST 1.0	EORTC	PI-RADS
RANO	Cheson 2007	Deauville
Macdonald	TNM	Milan
Choi	LYRIC	mRECIST Mesothelioma
WHO	iRANO	Lugano (Cheson 2014)
LILL STUBBLE LICE		

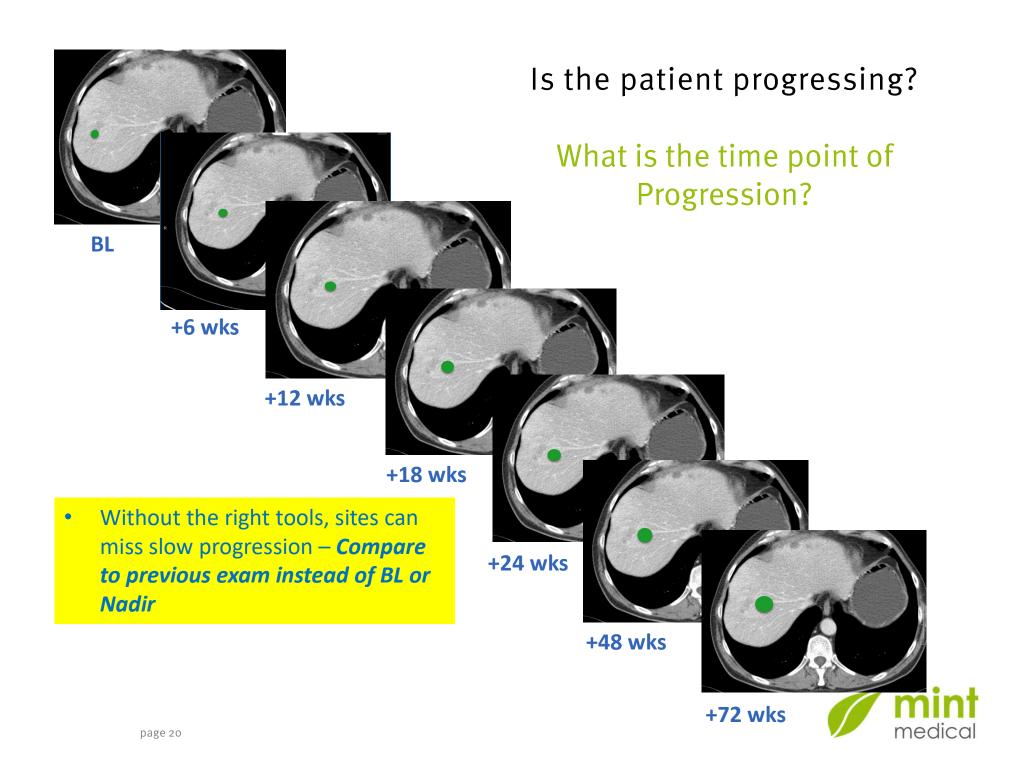


Standardization with Variability

- What is the minimum lymph node size in:
 - RECIST 1.1
 - irRC
 - iRECIST
 - Lugano
 - Cheson
- Progression Thresholds?
 - RECIST 1.1
 - WHO
 - irRC
 - Lugano
 - RANO
 - Choi
 - LYRIC

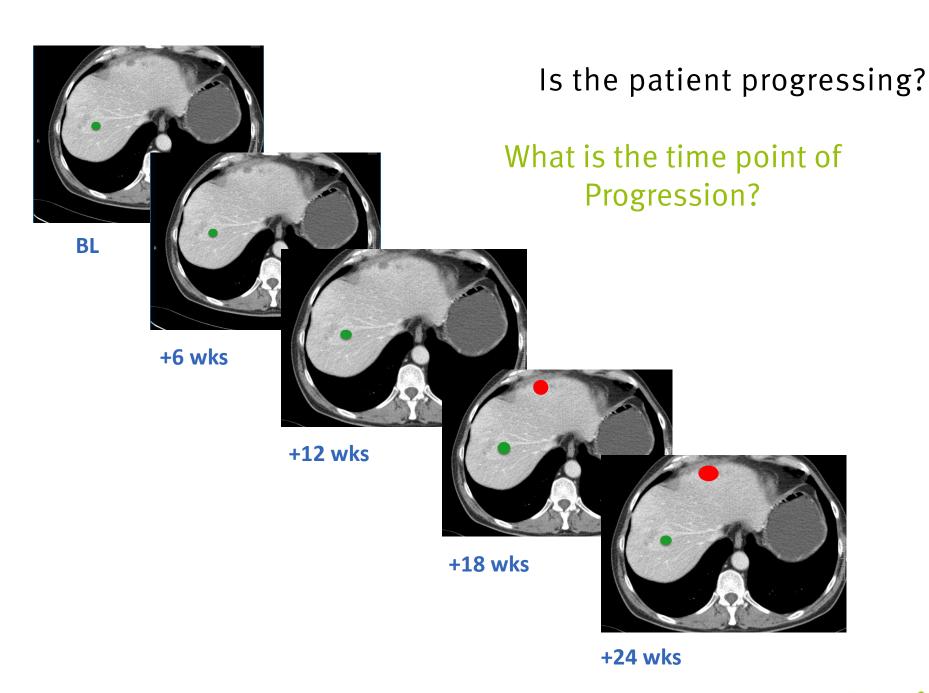
Assessment Criteria are Complex

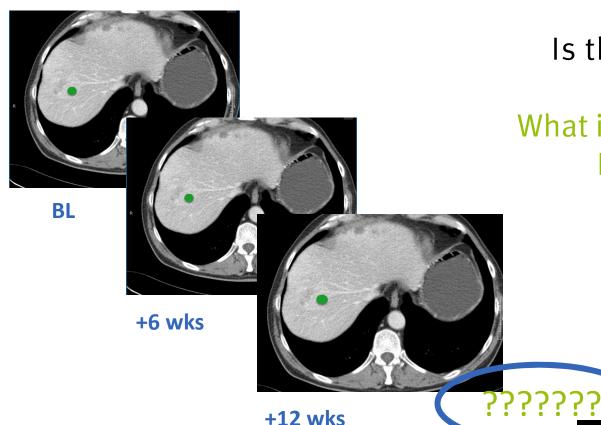

- CT Assessment
- PET metabolic Score
- SUV of hottest lesion
- SUV of all lesions
- Measurements of ALL nodes
- Deauville Score
- Change in Uptake
- Reference Tissue Evaluation
- Spleen Measurement
- Liver Evaluation
- Sum of Diameter Changes
- Calculations for Decrease from Baseline/Increase from Nadir



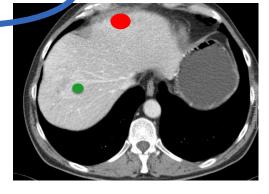
The Importance of Relevance

- Recall Challenge at the Clinical Site:
 - Lack of linkage with viewer and measurement tools
 - Often no 'version control' or tracking over time
 - → How do you find the nadir?




What's Missing?

- Recall Images
 - Clinical Site:
 - Local Patient Images
 - Images from outside institutions
 - Patients may be on multiple clinical trials
 - Determine where one clinical trial ends and one begins
 - All patient images in an institution may be accessible Which images are applicable (Is that arm x-ray or that shoulder MRI really applicable to the RECIST read?)
 - Central Review
 - Sent to CRO from clinical sites
 - Missing imaging is common and challenging to track
 - Find what you don't know you are missing



Is the patient progressing?

What is the time point of Progression?

 Not all images at the site make it to the Core lab/CRO – this leads to discordance on Date of Progression

Very common

+24 wks

Reporting

- Recall Measurements
 - Clinical Site
 - Often no structured or standardized procedures
 - Lesion Locations
 - Use of tools
 - Reporting only one axis (wrong axis) without labeling may be transposed/inferred to be short axis
 - Measuring too many lesions
 - Measuring wrong lesion at follow up due to disharmonized systems
 - Central Review
 - Dedicated software to track measurements and assessments

Tumor Tracking Form

	T1110 D	-		TOWER IMAGING MEDICAL GROUP - RECIST 1.1 TUMOR TRACKING FORM						
UCLA	RESEARCH IMAG	OSTIC RADIOLOGY	Tower Imaging Medical Group	NAME/SUBJECT#		MR #				
	TEOLAROT IMAG	ING REQUEST I	JIKIII .	PRINCIPAL INVESTIGATOR		SPONSOR/STUDY				
Patient Name:		DATE:		RESEARCH COORDINATOR		PHONE#:				
DOB:		PRIMARY DIAGNOSIS:		EVALUATION STANDARD (Circle):	RECIST 1.1	FAX #:				
P.I.:		IRB#:				PACE:				
SPONSOR/COMPANY:				RADIOLOGIST(Signature): ONCOLOGIST/PI (Signature):		·				
STUDY NAME:	☐ INDUSTRY SPONSORED TRIAL ☐ INVESTIGATOR INITIATED TRIAL		STUDY TYPE (Circle):	CT/MR H/N/C/A/P OTHER:	CT/MR H/N/C/A/P OTHER:	CT/MR H/N/C/A/P OTHER:				
REQUESTED BY:	NAME:	FAX:	PHONE:		DATE:	DATE:	DATE:			
Type of Procedure I					Body Parts: 1 2 3 4 5 6	Body Parts: 1 2 3 4 5 6	Body Parts: 1 2 3 4 5 6			
(Also attach Physician's 0	Order)			TARGET LESIONS						
ANATOMICAL AREA:	☐ Chest ☐ Abdomen	CONTRAST:	☐ Oral Contrast ☐ IV Contrast	# LESION DESCRIPTION	SIZE (mm) (Image #)	SIZE (mm) (Image#)	SIZE (mm) (Image #)			
	□ Pelvis		□ with/without contrast	1						
				3						
EVALUATE USING:	□ WHO Criteria		- D	4		()				
	□ RECIST 1.0 Criteria □ RECIST 1.1 Criteria	COMPARE TO:	 □ Previous Scan □ NoneBaseline Scan 	5	()					
	☐ Cheson/Halleck ☐ Other:	-3								
Cuaper Incupance.	☐ Imanging & Reading	CHARGE STUDY:	☐ Imaging & Reading	NON-TARGET LESIONS						
CHARGE INSURANCE:	☐ Imaging only ☐ Reading only	(Grant)	☐ Imaging only ☐ Reading only	# LESION DESCRIPTION	Present(+)/Absent(-)	Present(+)/Absent(-)	Present(+)/Absent(-)			
SPECIAL INSTRUCTION				2	NonCR/NonPD CR PD NE NonCR/NonPD CR PD NE	NanCR/NanPD CR PD NE NanCR/NanPD CR PD NE	NonCR/NonPD CR PD NE NonCR/NonPD CR PD NE			
SPECIAL INSTRUCTION	·			3	NenCR/NenPD CR PD NE	NonCR/NonPD CR PD NE	NenCR/NenPD CR PD NE			
				4	NonCR/NonPD CR PD NE	NenCR/NenPD CR PD NE	NenCR/NenPD CR PD NE			
				5	NonCR/NonED CR PD NE	NonCR/NonED CR PD NE	NonCR/NonPD CR PD NE			
Please fax a copy of	the completed report to:			NEW LESIONS						
77.778	_			# LESION DE SCRIPTION	Status	Status	Status			
Phone #:	Fax #:	E-Mail		1	Yes No NE	Yes No NE	Yes No NE			
	Tower Saint Jo	ohn's Imaging		2	Yes No NE	Yes No NE	Yes No <u>NE</u>			
2202 Wilshire Blvd. Santa Monica. CA 90403			3	Yes No NE	Yes No NE	Yes No NE				
	Phone 310 Fax 310-2 http://www.to	-264-9000 264-9004		Version 5.0 (last modified 11/6/12)	Always fax to Canoer Clinical Tr	ial Office and to Rafael Ramirez at 323-5	19-3062 Page/			

Reference: Ira Smalberg, MD Tower Imaging Medical Group. PINTAD 2014 Presentation

Reporting

- Survey of Oncologists and Radiologists:
 - Most oncologists (75%) thought the target lesion selection and follow up should be in a joint session with radiologist + oncologist not as done with the current paradigm
 - Current: Oncologist select and measure target lesions on their own
 - 60% of oncologists still hand write measurements on tumor tracking forms or hand write measurements on scrap paper before transferring information to an electronic form
- Reference: Quantitative Radiology Reporting in Oncology: Survey of Oncologists and Radiologists. L. Folio et. al., AJR:205, September 2015.

REPORT CT scan of the chest WITH intravenous contrast, using standard protocol.

COMPARISON: CT chest 3/15/2013.

FINDINGS:

Lines/tubes: None.

Lungs and Airways: There has been a left upper lobectomy for lung cancer. There is right apical scarring there is a new ill-defined patchy groundglass opacity measuring 9 mm in the right upper lobe on image 51.

There are several nodules some of which are solid and some of which are groundglass opacity. In the right upper lobe on image 51 there is a 0.95 cm nodule which is mostly of groundglass opacity and is unchanged in size. There is also just inferior to with on image 53 a second 3 mm nodule which is also unchanged. There is a mixed groundglass solid nodule abutting the minor fissure on the right side also unchanged.

On the left side there is a nodular lesion which is solid with a tail to the pleura that is unchanged. There is also an area of what appears to be subpleural consolidation in the lingula which measures 1.9 x 2.9 cm as compared with 1.8 x 2.6 on the previous study. There is additional opacity in the lingula but may represent atelectasis.

Pleura: There is a small left pleural effusion that is unchanged.

Heart and mediastinum: The thyroid gland is normal. No significant mediastinal, bilar or axillary lymphadenopathy is seen. The heart and

pericardi effusion

Soft tiss

Abdomen: abnormali kidneys.

Bones: Th suspiciou

IMPRESSIO

Multiple pulmonary nodules some which are solid and some of which are groundglass with little significant change since March 2013. However as compared with May 2012 the lingular opacification has definitely increased in size. There is also a new groundglass focal opacity measuring about a centimeter in the right upper lobe. The findings are concerning for recurrent adenocarcinoma.

Small pericardial effusion and small left pleural effusion unchanged

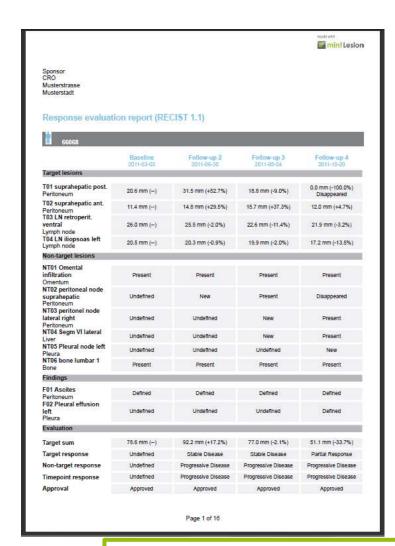
Multiple pulmonary nodules some which are solld and some of which are groundglass with little significant change since March 2013. However as compared with May 2012 the lingular opacification has definitely increased in size. There is also a new groundglass focal opacity measuring about a centimeter in the right upper lobe. The findings are concerning for recurrent adenocarcinoma.

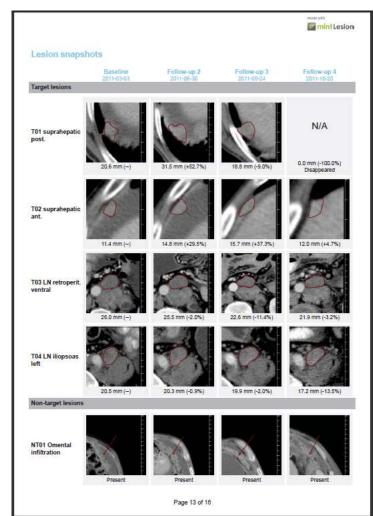
Small pericardial effusion and small left pleural effusion unchanged

Radiology Report

Example: Lung Cancer

Word Choice


- 'Indeterminate lymph nodes'
- 'Inconclusive for progression'
- The phrase 'cannot be excluded'
- 'Need additional time point'
- 'Possible infection'
- 'Concerning'
- 'Likely progression'
- 'May represent a new lesion"


Multiple pulmonary nodules some which are solid and some of which are groundglass with little significant change since March 2013. However as compared with May 2012 the lingular opacification has definitely increased in size. There is also a new groundglass focal opacity measuring about a centimeter in the right upper lobe. The findings are concerning for recurrent adenocarcinoma.

Small pericardial effusion and small left pleural effusion unchanged

Reference: Strategies for Improving the Value of the Radiology Report: A Retrospective Analysis of Errors in Formally Over-read Studies. S. Kabadi; A. Krishnaraj. J Am Coll Radiol 2017;14:459-466.

Structured Radiology Report

Example: RECIST 1.1

Survey Question*	Disagree Entirely	Rather Disagree	Disagree (Total)	Neutral	Agree (Total)	Rather Agree	Agree Entirely	Total	Result
C: To make a good report, the radiologist has to know the medical condition of the patient	18 (2.6)	31 (4.4)	49 (7.0)	42 (6.0)	611 (87.0)	332 (47.3)	279 (39.7)	702 (100.0)	Yes (87.0)
R: To make a good report, the radiologist has to know the medical condition of the patient	2 (1.5)	11 (8.2)	13 (9.7)	5 (3.7)	116 (86.6)	41 (30.6)	75 (56.0)	134 (100.0)	Yes (86.6
C: To make a good report, the radiologist has to know what the clinical question is	3 (0.4)	7 (1.0)	10 (1.4)	8 (1.1)	681 (97.4)	194 (27.8)	487 (69.7)	699 (100.0)	Yes (97.4
R: To make a good report, the radiologist has to know what the clinical question is	0	1 (0.8)	1 (0.8)	1 (0.8)	131 (98.5)	11 (8.3)	120 (90.2)	133 (100.0)	Yes (98.5
C: It is better that the radiologist does not know much about the patient, to avoid bias	305 (43.6)	292 (41.7)	597 (85.3)	80 (11.4)	23 (3.3)	19 (2.7)	4 (0.6)	700 (100.0)	No (85.3
C: Any physician who requests a radiologic examination that is not part of any routine, should state a clear clinical question	1 (0.1)	5 (0.7)	6 (0.9)	26 (3.7)	671 (95.4)	221 (31.4)	450 (64.0)	703 (100.0)	Yes (95.4

Note.—Data are absolute numbers, and numbers in parentheses are percentages (rounded to the nearest decimal). Statements pertaining to local situations and irrelevant to an international readership have not been included.

The Radiology Report as Seen by Radiologists and Referring Clinicians: Results of the COVER and ROVER Surveys. Bosmans et. al. **Radiology:** Volume 259: Number 1—April 2011

^{*} C = referring clinicians (COVER survey), R = radiologists (ROVER survey).

Advantage of Clinical Information

- Clinical history does not always = more accurate interpretation
- Study Aim Prospective blinded study to determine whether clinical information affects the CT report (relatively small sample of 50 patients)
 - The influence of clinical information on the reporting of CT by radiologists. Leslie A, Jones AJ, Goddard PR. Br J Radiol 2000;73: 1052-5.
- Findings
 - Correct clinical information improved the radiology report
 - Accurate information was beneficial
 - Inaccurate detrimental lead to bias and incorrect outcomes
 - As complexity of the case increase, the clinical information became more important
- Recall:
 - Clinical Site: Routine Report often referred to when performing research read
 - Central Reads: Well-controlled, very limiting information

Back to Latour

- Bruno Latour Immutable Mobiles
- Describes how information is passed from between 'agents'
 - Newspaper, Scientific Publication, Criteria, Radiology Report
 - Premise: Easily transported between agents (people/institutions) and has permanence
- Importance:
 - Allows coalition building around an idea
 - Proof (map)
 - More important comparable
 - The act of making an concept permanent through creating a 'immutable mobile' does not mean that EXACT information exists or that, for example, the natives are less knowledgeable
 - Unification around an idea

→Radiology Report, Tumor Tracking Form, eCRFs, Data Exports, Images

....Comparable, mutually understood, transportable

Looking at Images: Past, Present, Future - Central Review

Early 2000's

- Images read in batches; sometimes images would be held for years then read
- Central read STOPPED at Progression
- Images received from sites 'in the mail' – Shipping images and sending labels to the sites and mailing envelopes was a major effort.
- Central Imaging Reads were used by the sponsor for supporting the endpoint not provided to the clinical sites
- RECIST 1.0, WHO, Cheson Criteria mainly used in oncology

Changes in Technology ~2007 to 2011

- Started to send images electronically
- New criteria (irRC) and new treatments (Immuno-Therapy) stopping reads at Progression no longer made sense
- RECIST 1.1 published (revision to RECIST 1.0)
- Immunotherapies became available – Common question "after PD what do we call the assessment if the patient gets better? (i.e. the tumor resolves/improves)" – struggles with how to report
- Imaging based endpoints –
 What criteria is used to support the trial? RECIST, irRC, etc?

Change in how Central Reads Used/Value of Central Reads Questioned

(~2011+)

- Discordance major topic
- Clinical trial sponsors began writing into their protocols that the central readers MUST confirm Progression before site investigator could take the patient off study
- CROs requested to do real-time ongoing reads (not batches), real time adjudication, fast turnarounds, ongoing exports of clean data
- Radiology Reads that had errors and/or retrospective data changes had huge consequences to patients/ protocols
- CROs directed to send results to sites and support radiology read results to primary investigator

Thank you

Kelie H. Luby
VP Clinical Trials Software
Email: k.luby@mint-medical.com
Mint Medical Inc. | 100 Horizon Center Blvd.
Hamilton, New Jersey 08691